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Sensorimotor integration



Decisions: Probabilities and Utilities

Inference Utilities



Decisions are important



Where will this ball land?



Looking at the ball: Likelihood



Prior knowledge



Combined



Bayesian statistics
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Bayesian statistics
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Experimentally creating uncertainty

Lateral shift

Projector

Mirror

Screen

Sensor

Subject

(Körding & Wolpert 2004, Nature)
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Evidence: Uncertainty in the feedback
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Model 1: Naïve Compensation
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Model 2: Optimal Bayesian
Compensation
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Model 1: full compensation
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Model 3: Supervised Learning
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Feedback only in one case -> only one strategy can be learnt



Supports model 2: Bayesian
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Slope over 10 subjects
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Measuring the prior

Assume subjects use maximum a posteriori strategy

()|Likelihood*Priortruesensedpxx=

()()21estimatedsensedsensedestimatetruetruetruexdpxxxdxpxσ−=

See also Paninski 2004, NIPS

()()()2221|()2truesensedfeedbacktruesensedtruesensedfeedbackxxpxxepxpxσσπ−−=



Estimating subjects’ priors



Non gaussian Distributions

(Körding& Wolpert NIPS 2003)
(compare Miyazaki et al, J Neurophys 2005)



2) Reward and Loss
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Motor outcome Loss = -Objective=-Utility=-Reward
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Utility functions for forces

1 hour 10 minutes



Typical example



Economics / Indifference Curves
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The problem space for forces
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Experimental setup



Force preference experiment

Force Force

Choose least
effortful

Staircase yields Effort(       )=Effort(       )
Compare walking experiments of Jean-Paul Laumond and his students



Results (subject 1)
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Results
(Population data n=5)

Körding, Fukunaga & Wolpert, PLOS Biology

Link to muscle properties is still missing 



Conclusions

• I) People use Bayesian statistics to
optimally estimate positions for
movements

• II) Utility functions are useful to
describe human movement decisions

• Conceptual framework for
understanding movement decisions
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3) Choosing a sequence (work in
progress)

Car has fixed maximal strength

Target:
Park here

Sutton & Barto 1998

Reinforcement learning



My brothers new toy



After Learning



Experimental setup

Robot simulates mass in force field



The state space

Position
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Policy= Force as function of state
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Measured policy and policy predicted by
theoretical reinforcement learning

Assume loss function is simple 
infer Loss function _ predict behaviour
uncertainty in velocity of 20cm/s _Partially observed
delay ~250ms _ Non markovian

Goal: understanding combination probabilities, utilities 

F
orce

Using loss function

2Loss=1Fdtα+∫


