Calcul bayesien dans le systeme sensorimoteur

Paris, 2005

www.koerding.com

Sensorimotor integration

Decisions: Probabilities and Utilities

Decisions are important

Where will this ball land?

Looking at the ball: Likelihood

Prior knowledge

Combined

Bayesian statistics

Bayesian statistics

Experimentally creating uncertainty

Evidence: Uncertainty in the feedback

Model 1: Naïve Compensation

Model 2: Optimal Bayesian Compensation

Model 1: full compensation

Model 3: Supervised Learning

Feedback only in one case -> only one strategy can be learnt

Supports model 2: Bayesian

Slope over 10 subjects

Measuring the prior

Assume subjects use maximum a posteriori strategy

See also Paninski 2004, NIPS

Estimating subjects' priors

Non gaussian Distributions

(Körding& Wolpert NIPS 2003) (compare Miyazaki et al, J Neurophys 2005)

2) Reward and Loss

Motor outcome Loss = -Objective=-Utility=-Reward

Utility functions for forces

1 hour

10 minutes

Typical example

Economics / Indifference Curves

Number of Apples

The problem space for forces

Experimental setup

Force preference experiment

Staircase yields Effort(\frown)=Effort(\int)

Compare walking experiments of Jean-Paul Laumond and his students

Results (subject 1)

Conclusions

- I) People use Bayesian statistics to optimally estimate positions for movements
- II) Utility functions are useful to describe human movement decisions
- Conceptual framework for understanding movement decisions

Acknowledgements

Daniel Wolpert Izumi Fukunaga Wolpert lab

Peter Dayan Gatsby Computational Unit

3) Choosing a sequence (work in progress)

Reinforcement learning

Sutton & Barto 1998

My brothers new toy

After Learning

Experimental setup

Robot simulates mass in force field

The state space

Measured policy and policy predicted by theoretical reinforcement learning Using loss function 100 50 -0.5 Velocity (cm/s) Force 50 0.5 100 -0.15 -0.1 -0.05 0.2 20 10 20 0 10 Position (cm)

Assume loss function is simple infer Loss function _ predict behaviour uncertainty in velocity of 20cm/s _Partially observed delay ~250ms _ Non markovian

Goal: understanding combination probabilities, utilities