Perception and the statistics of natural scenes

Yair Weiss
School of Computer Science and Engineering
The Hebrew University of Jerusalem
www.cs.huji.ac.il/~yweiss

Collaborators: Anat Levin, Assaf Zomet
Outline

- Perception and statistics.
- Perception of transparency.
- Some applications to computer vision.
The idea that the statistics of the sensory stimuli we receive from the environment are important for perception and cognition is not new, and surprisingly clear statements about it can be found before 1950 in the writings of Mach (1886), Pearson (1892), Helmholtz (1925), Craik (1943) and others.

(Barlow 2001)
Books, workshops, journal special issues.

The past decade has seen an explosion of interest in the application of statistical techniques to modeling vision in both biological and artificial systems. ⋯ The mathematics of statistics, stochastic processes and Bayesian inference provide the natural framework for understanding these aspects of visual processing.

(CFP JOSA A special issue summer 2003)
“Bayesian” approach to perception

Pr(\text{percept}|\text{image}) = \frac{\text{Pr}(\text{percept}) \text{ Pr}(\text{image}|\text{percept})}{\text{Pr}(\text{image})}

• Pr(\text{percept}) prior.

• Pr(\text{image}|\text{percept}) likelihood.
Quantitative predictions

(Weiss et al. 2002)
Where do priors come from?
Transparency

two layers

one layer
Puzzle of Transparency

\[I(x, y) = I_1(x, y) + I_2(x, y) \]

- why not “simpler” one layer solution?

- which two layer out of infinite possibilities?
Transparency in human vision

- Metelli’s conditions (Metelli 74)

- T-junctions, X-junctions, doubly reversing junctions (Adelson and Anandan 90, Anderson 99)

Not obvious how to apply “junction catalogs” to real images.
Transparency in the “real world”
Junction catalogs?

(Bart Anderson)
Our approach

\[I(x,y) = I_1(x,y) + I_2(x,y) \]

Probability distribution \(\Pr(I_1), \Pr(I_2) \). Percept is most probable decomposition.
Can we make this work?

Assumption: visual system summarizes statistics of images via statistics of simple features.

(e.g. Zhu and Mumford 97, Della Pietra Della Pietra and Lafferty 96, Heeger Bergen 95).
Statistics of derivative filters

image

\[dx \text{ hist} \]

\[dx \log \text{ hist} \]
Generalized Gaussian distribution (Mallat 89, Simoncelli 95)

\[\Pr(x) \propto e^{-x^\alpha/s} \]

with \(\alpha < 1 \).
Is sparsity enough?
Is sparsity enough?
Cornerness operator

\[c(x_0, y_0) = \det(\sum w(x, y) \begin{pmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{pmatrix}) \]
Corner Histograms

 deriv filter

corner operator

Gaussian: \(-x^2\)

Laplacian: \(-x\) \(-x^{1/2}\) \(-x^{1/4}\)
Fitting $P(x) \propto e^{-x^\alpha}$
The model

\[I(x, y) = I_1(x, y) + I_2(x, y) \]

Pr\((I_1) \), Pr\((I_2) \) defined via gradients:

\[
\log \Pr(I_1) = \log \Pr(I_2) = -\log Z - \sum_{x,y} |\nabla I(x, y)|^\alpha + \eta c(x, y)^\beta
\]

with \(\alpha = 0.7, \beta = 0.25, \eta > 1. \)
Does this predict transparency?

\[\log P = -\log Z - \sum_{x,y} |\nabla I(x, y)|^\alpha + \eta c(x, y)^\beta \]
Intuition:

- Adding typical images will only increase number of corners.

- Not true for white noise
How important are the statistics?

Is it important that the statistics are non Gaussian? Would any cost that penalized high gradients and corners work?
The importance of being non Gaussian

\[\log P = -\log Z - \sum_{x,y} |\nabla I(x, y)|^\alpha + \eta c(x, y)^\beta \]
The “scalar transparency” problem

\[a + b = 1 \]

with \(a > 0, b > 0 \).

Consider a prior over positive scalars \(\Pr(x) \propto e^{-x^\alpha} \), what is the MAP solution?
The “scalar transparency” problem

\[a + b = 1 \]

with \(a > 0, b > 0 \).

Observation: The solution is obtained with \(a = 1, b = 0 \) or \(a = 0, b = 1 \) if and only if \(\log P(x) \) is below diagonal.
Does this predict transparency?

$$\log P = -\log Z - \sum_{x,y} |\nabla I|^\alpha + \eta c(x, y)^\beta$$
Can we perform global optimization?

$$\log P = - \log Z - \sum_{x,y} |\nabla I|^\alpha + \eta c(x, y)\beta$$
Conversion to discrete MRF

\(g_i = (g_{ix}, g_{iy}) \): discretization of \(I_1 \) gradient at location \(i \). \(f_i \) is discretization of \(I_2 \) gradient \(f_i = (I_x, I_y) - g_i \).

\[
\Pr(g) = \frac{1}{Z} \prod_i \psi_i(g_i) \prod_{<ijkl>} \psi_{ijkl}(g_i, g_j, g_k, g_l)
\]

\[
\psi_i(g_i) = e^{-|g_i|^\alpha - |f_i|^\alpha}
\]

\[
\psi_{ij}(g_i, g_j, g_k, g_l) = e^{-\det(g_i g_i^T + g_j g_j^T + g_k g_k^T + g_l g_l^T)^\beta}
\]

\[
e^{-\det(f_i f_i^T + f_j f_j^T + f_k f_k^T + f_l f_l^T)^\beta}
\]

\(\psi_{ijkl}(g_i, g_j, g_k, g_l) \) also enforce integrability
Optimizing discrete MRF

\(g_i = (g_{ix}, g_{iy}) \): discretization of \(I_1 \) gradient at location \(i \). \(f_i \) is discretization of \(I_2 \) gradient \(f_i = (I_x, I_y) - g_i \).

\[
\Pr(g) = \frac{1}{Z} \prod_i \Psi_i(g_i) \prod_{<ijkl>} \Psi_{ijkl}(g_i, g_j, g_k, g_l)
\]

\(|g|^N \) possible assignments. Solution: use max-product belief propagation.
Belief Propagation:

- A parallel message-passing algorithm.

- Every node sends a probability density to its neighbors.
\[\log P = - \log Z - \sum_{x,y} |\nabla I|^\alpha + \eta c(x, y)^\beta \]
Caveats

Significant manual tweaking needed to get BP to converge on “real” images:

- BP convergence depends on update order.
- discretization artifacts
BP Patches Results
Input

Output I_1

Output I_2
EM results
Future work

- \(\log P = -\log Z - \sum_{x,y} |\nabla I|^\alpha + \eta c(x,y)^\beta \) Learn features and weights automatically. (Zhu and Mumford 97, Della Pietra Della Pietra and Lafferty 96).

- Extend to more realistic imaging situations.

- Use similar prior to model amodal completion.
Conclusions

• natural scene statistics predict perception of transparency

• Algorithm can decompose a *single image* into the sum of two images.