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• Explore the idea of denoising by averaging groups of “similar” pixels

• Links denoising to grouping in the gestalt sense

• Understand (and use) the link with P.D.E. models, in particular the Perona-
Malik equation
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Figure 1: ”Adding noise”. Attneave, 1956: first white noise image drawn by hand,
proposition that our perception only retains average and variance in white noise.
No structure in noise
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Denoising algorithms

• A denoising method Dh is a decomposition

v = Dhv + n(Dh, v), (1)

where

– h is a filtering parameter which usually depends on the standard deviation
of the noise σ.

– Dhv is more smooth than the observed image v.

– n(Dh, v) is the noise guessed by the method.

Ideally, n(Dh, v) looks like “a white noise”. In particular, does not contain
what we can suspect to be information in the image.
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Figure 2: Lena (1973), A decomposition example : gaussian filtering
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Image Filters: Gaussian filtering

• If Xi are i.i.d of standard deviation σ

Var (
X1 + · · ·+ Xm

m
) =

σ2

m

Noise is reduced by averaging.
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Image Filters II: Directional Filtering (Perona, Malik, Rudin, Osher,
Fatemi, Weickert, Alvarez, Lions,....

• Local frame : the vectors η = Du
|Du| and ξ = Du⊥

|Du| are respectively orthogonal
and parallel to the level line passing trough x.

• Average of spatially close pixels in the direction of the level line.

AFhu(x) = Gh ∗ u|l(~ξ) =
∫

R
Gh(t)u(x + t~ξ)dt,

where Gh is the one-dimensional Gauss function of standard deviation h.
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• Difference with gaussian filter:

• The straight edges are well restored while flat and textured regions are
degraded.
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Image Filters III: Yaroslavski Neighborhood filter (sigma, bilateral).

• Average of pixels which are close spatially and for grey level.

YNFh,ρu(x) =
1

C(x)

∫

Bρ(x)

e−
|u(y)−u(x)|2

h2 u(y)dy,

where C(x) is a normalizing factor, Bρ(x) is a ball of center x and radius ρ

and h is the filtering parameter.

• Gaussian filtering does not take into account grey level values.

Ghu(x) =
1

C(x)

∫
e−

|y−x|2
h2 u(y)dy
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• Noise is reduced in flat zones but not near the discontinuities. Isolated noisy
points are kept.
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Figure 3: sigma-filter, denoised, method noise
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Figure 4: Groups of similar windows in a digital image, long range interaction.
First used by Efros and Leung at UCB for texture synthesis
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Figure 5: Pixels with a similar neighborhood will have a large weight (q1,q2) while
pixels with a much different neighborhood have a small weight (q3).
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The NL-means algorithm.

• NL-means filter. Average of pixels with a similar configuration in a whole
gaussian neighborhood.

NLh[u](x) =
1

C(x)

∫

Ω

e−
1

h2

∫
R2 Ga(t)|u(x+t)−u(y+t)|2dt u(y) dy,

where Ga is a Gaussian kernel of standard deviation a and h acts as a filtering
parameter.

• Non Local: Pixels of the whole image take part of the previous average.

• Neighborhood filters only compare the grey level value of neighboring pixels.

YNFh,ρu(x) =
1

C(x)

∫

Bρ(x)

e−
|u(y)−u(x)|2

h2 u(y)dy,
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Figure 6: NL-means denoising and “method noise”
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Figure 7: Sigma-filter, NL-means, method noise for each.
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Probability distribution of similar pixels : gestalt groups!

• Flat region. The large coefficients are spread out like in a convolution.

• Straight edge. The large coefficients are aligned like in a anisotropic filter.

• Curved edge. The weights favor pixels belonging to the same contour.
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• Flat neighborhood. The average is made in the grey level neighborhood like
the Yaroslavsky neighborhood filter.

• Periodic case. The large coefficients are distributed across the texture (non
local).

• Repetitive structures. The weights favor similar configurations even they are
far away (non local).
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Figure 8: Real noisy image, signal dependent noise. Professional denoising soft-
ware and NL-means.
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Comparison: anisotropic, sigma filter, NL-means

• Comparison on a periodic image

• Comparison on a natural texture.
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• Anisotropic, sigma-filter, NL-means.

• Idem.
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Comparison: Residual noise

• Residual noise on Barbara.

• Residual noise on Lena.
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Problem: A shock effect

• The neighborhood filter and the NL-means share a shock effect.

Flat zones and spurious boundaries are created.

• Objective: Analyze the enhancing behavior of the neighborhood filter and the
NL-means algorithm.
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PDEs filtering and enhancement.

• The heat equation.
ut = ∆u.

The heat equation is an isotropic diffusion.

∆u = uξξ + uηη

where uξξ is the second derivative in the direction ξ = Du⊥/|Du| and uηη the
second derivative in the the direction η = Du/|Du|.

uηη = D2u(
Du

|Du| ,
Du

|Du| ), uξξ = D2u(
Du⊥

|Du| ,
Du⊥

|Du| ),
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Theorem 1 (Gabor 1960) The convolution with a gaussian kernel Gh is
such that

Gh ∗ u− u = h2∆u + o(h2),

for h small enough.

• The mean curvature motion.
ut = uξξ.

We diffuse only in the tangent direction and not across the edges.

Theorem 2 The anisotropic filter AFh is such that

AFhu(x)− u(x) =
1
2
uξξh

2 + o(h2),

where the relation holds when Du(x) 6= 0.

• The inverse heat equation. Reversing the time we deblur the image.

ut = −∆u = −uξξ − uηη

It is ill posed.
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• The Perona-Malik equation: a filtering/enhancing equation.

ut = div(g(|Du|2)Du),

where g : [0, +∞) → [0, +∞) is a smooth decreasing function satisfying
g(0) = 1, lims→+∞ g(s) = 0.

The equation rewrites as

ut = g(|Du|2)uξξ + h(|Du|2)uηη.
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- One dimensional diffusion term in the orthogonal direction to the gradient.

- One dimensional diffusion in the gradient direction when |Du|2 < k and a
reverse heat equation term when |Du|2 > k.
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Neighborhood filters and PDEs: 2D

Theorem 3 Suppose u ∈ C2(Ω), and let ρ, h, such that ρ, h → 0 and h = O(ρ).

Then, for x ∈ Ω,

YNFh,ρu(x)− u(x) '
[
g̃(

ρ

h
|Du(x)|) uξξ(x) + f̃(

ρ

h
|Du(x)|) uηη(x)

]
ρ2
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• Diffusion in the tangent direction with decreasing magnitude.

• Filtering/enhancing algorithm in the normal direction depending on |Du|. If
B̃ denotes the zero of f̃ , then a filtering model is applied wherever |Du| < B̃ h

ρ

and an enhancing strategy wherever |Du| > B̃ h
ρ .

• The intensity of the filtering in the tangent diffusion and the enhancing in
the normal diffusion tend to zero when the gradient tends to infinity. Thus,
points with a very large gradient are not altered.
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The level lines of the Perona-Malik filter and the neighborhood filter tend to
concentrate, creating flat zones. (Same effect for total variation denoising).
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Geometrical explanation

x

uHxL

uHxL+h

uHxL-h

YNFHxL

x- x+

The number of points y satisfying u(x) − h < u(y) ≤ u(x) is larger than the
number satisfying u(x) ≤ u(y) < u(x) + h. Thus, the average value Y NF (x) is
smaller than u(x), enhancing that part of the signal. The regression line of u

inside (x−, x+) better approximates the signal at x.
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Linear regression correction

• Locally approximate the image by a plane.

• The filtered value at x = (x1, x2) is given by ax1 + bx2 + c, where a, b, c

minimize

min
a,b,c

∫

Bρ(x)

w(x,y)(u(y)− ay1 − by2 − c)2dy

and

w(x,y) = e−
|u(y)−u(x)|2

h2 .

• Points with a grey level value close to u(x) will have a larger influence in the
minimization process than those with a further grey level value.
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• Theorem 4 Suppose u ∈ C2(Ω), and let ρ, h > 0 such that ρ, h → 0 and
O(ρ) = O(h). Let g̃ be the continuous function defined as g̃(0) = 1

6 ,

g̃(t) =
8t2e−2t2 − 8te−t2E(t) + 2E(t)2

t2(4E(t)2 − 8te−t2E(t))

for t 6= 0, where E(t) = 2
∫ t

0
e−s2

ds. Then

LYNFh,ρu(x)− u(x) ' (
1
6
uξξ + g̃(

ρ

h
|Du|)uηη) ρ2.
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• The tangent diffusion is a positive constant and the normal diffusion is
positive and decreasing, and therefore there is no enhancing effect.

• The algorithm combines the tangent and normal diffusions wherever the
gradient is small. Wherever the gradient is larger the normal diffusion is
canceled and the image is filtered only in its tangent direction.

• In the Perona-Malik model the diffusion is stopped near the edges. In this
case, the edges are filtered by a mean curvature motion.
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The regression correction filters the level lines by a curvature motion
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The linear correction doesn’t create shocks contours.
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The Nl-means linear regression correction

• In order to apply the regression correction to the NL-means algorithm we
restrict the search zone for a pixel x = (x1, x2) to a neighborhood Bρ(x).

• The filtered value is given by ax1 + bx2 + c, where a, b, c minimize

min
a,b,c

∫

Bρ(x)

w(x,y)(u(y)− ay1 − by2 − c)2dy

and
w(x,y) = e−

1
h2

∫
R2 Ga(t)|u(x+t)−u(y+t)|2dt.
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• Neighborhood filter, without and with linear correction

• NL-means, without and with linear correction
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Figure 9: “Against motion compensation”. Three images of a movie + noise.
Second row: denoising of the central frame by AWA, by NL-means on trajectory
and by general NL-means. Bottom : method noise.
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Preprints available at CMLA:

• No 2004-15 : On image denoising methods.

• No 2005-04 : Neighborhood filters and PDE’s.
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Consistency of the NL-means algorithm

• Hypothesis: As the size of the image grows we can find many similar samples
for all the details of the image (stationarity assumptions).

– Let Z denote the sequence of random variables Zi = {V (i), V (Ni\{i})}
– Let denote N̂Ln the NL-means algorithm applied to the subsequence of Z,

Zn = {V (i), V (Ni\{i})}n
i=1 and where v(Ni\{i}) is used to compute the

weights instead of v(Ni).

– Let r(i) denote E[V (i) | V (Ni\{i}) = v(Ni\{i})].
• Theorem 5 (Conditional expectation theorem) Let Z = {V (i), V (Ni\{i})}

for i = 1, 2, . . . be a strictly stationary and mixing process. Then,

|NLn(i)− r(i)| → 0 a.s

for i ∈ {1, . . . , n}.
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Consistency of the NL-means algorithm

• Additive white noise model

Theorem 6 Let V,U,N be random fields on I such that V = U + N , where
N is a signal independent white noise. Then, the following statements are
hold.

(i) E[V (i) | V (Ni\{i}) = x] = E[U(i) | V (Ni\{i}) = x] for all i ∈ I and
x ∈ Rp.

(ii) The expected random variable E[U(i) | V (Ni\{i})] is the function of
V (Ni\{i}) that minimizes the mean square error

min
g

E[U(i)− g(V (Ni\{i}))]2 (1)
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Neighborhood filters and PDEs: 1D

Theorem 7 Suppose u ∈ C2, and let ρ, h, α > 0 such that ρ, h → 0 and

h = O(ρα). Consider the continuous function g(t) = te−t2

E(t) , for t 6= 0, g(0) = 1
2 ,

where E(t) = 2
∫ t

0
e−s2

ds. Let f be the continuous function

f(t) =
g(t)
t2

+ g(t)− 1
2t2

, f(0) =
1
6
.

Then, for x ∈ R,

1. If α < 1,

YNFh,ρu(x)− u(x) ' u′′(x)
6

ρ2.

2. If α = 1,

YNFh,ρu(x)− u(x) ' f(
ρ

h
|u′(x)|) u′′(x) ρ2.

3. If 1 < α < 3
2 ,

YNFh,ρu(x)− u(x) ' g(ρ1−α|u′(x)|)u′′(x) ρ2.
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- The filter behaves as a filtering/enhancing algorithm depending on the magnitude
of |u′(x)|.
- If B denotes the zero of f , then a filtering model is applied wherever |u′| < B h

ρ

and an enhancing model wherever |u′| > B h
ρ .

- Points x where |u′(x)| is large are not altered.
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Singularities are created due to the transition of smoothing to enhancement. The
number of enhanced regions strongly depends upon the ratio ρ

h .
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The shock filter is sensitive to the noise and creates spurious steps. The
filtering/enhancing character of the neighborhood filter avoids this effect.
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