Neuromodulators and the Neural Representation of Uncertainty

Peter Dayan

Gatsby Computational Neuroscience Unit University College London

Sham Kakade Angela Yu

Computational Neuromodulation

- general: excitability, signal/noise ratios
- **specific**: prediction errors, uncertainty signals

Learning and Inference

Bayesian Uncertainty

- arises from:
 - stochasticity
 - ignorance
 - transient
 - possibility of ongoing change
- affects:
 - -learning (the more the merrier)
 - inference (the less the merrier)

Experimental Data

ACh & NE have similar *physiological* effects

• *suppress* recurrent & feedback processing

(e.g. Kimura et al, 1995; Kobayashi et al, 2000)

• enhance thalamocortical transmission

(e.g. Gil et al, 1997)

boost experience-dependent plasticity

(e.g. Bear; Shulz; Merzench)

ACh & NE have distinct *behavioral* effects:

- ACh *boosts* learning to stimuli with uncertain consequences (e.g. Bucci, Holland, & Gallagher, 1998)
- NE *boosts* learning upon encountering global changes in the environment (*e.g.* Devauges & Sara, 1990)

Learning

• Learning: predict; control

 Δ weight α (error) x (learning rate) x (stimulus)

- dopamine

phasic prediction error for future reward

- serotonin

phasic prediction error for future punishment

- acetylcholine

expected uncertainty boosts learning

- norepinephrine

unexpected uncertainty boosts learning

Conditioning

reward given $r = \mathbf{w} \cdot \mathbf{x} + \epsilon$ prediction weights $\mathbf{w}' = \mathbf{w} + \eta$ where

 $\begin{array}{ll} \text{output noise} & \epsilon \sim \textit{N}[0,\rho^2] \\ \\ \text{allowable drift} & \eta \sim \textit{N}[0,\sigma^2\mathbb{I}] \end{array}$

Single Stimulus

Intuition

window model: w is the average of last three rewards:

standard deviation goes like

- more data \Rightarrow more certain
- use of 3 rewards controls speed of adaptation
- asymptotic sd shouldn't ignore changes in r

Multiple Stimuli

Competition for prediction error between L and S: sound should 'win' since less well established

Formally: Kalman Filter

observation: $r = \mathbf{w} \cdot \mathbf{x} + \epsilon$ state: $\mathbf{w}' = \mathbf{w} + \eta$

$$\mathbf{w} \sim N[\widehat{\mathbf{w}}, \Sigma]$$

 $\delta = r - \widehat{\mathbf{w}} \cdot \mathbf{x}$

 $\widehat{\mathbf{w}}' = \widehat{\mathbf{w}} + \delta \frac{\Sigma \cdot \mathbf{x}}{\rho^2 + \mathbf{x} \cdot \Sigma \cdot \mathbf{x}}$ $(\mathbf{w}' = \mathbf{w} + \delta \alpha \mathbf{x} \quad \text{delta rule})$

- like the delta rule, bar compression and rotation
- compression is competition for learning

 $\Sigma_{ii}/\left(\rho^2+\sum_j \Sigma_{jj}\right)$

- ρ^2 sets learning rate according to noise (KKT)
- rotation allows backwards blocking
- update for Σ

$$\Sigma' = \Sigma + \sigma^2 \mathbb{I} - \frac{\Sigma \cdot \mathbf{x} \cdot \mathbf{x} \cdot \Sigma}{\rho^2 + \mathbf{x} \cdot \Sigma \cdot \mathbf{x}}$$

 Δ weight α (error) x (learning rate) x (stimulus)

ACh and Learning

• Holland; Gallagher showed

amygdala CEN \longrightarrow nBM \xrightarrow{ACh} parietal cortex

to be critically involved in boosted learning

hippocampal/ACC ACh involved in suppressed learning

				Control	PPC-Lesion
Table 1. Outline of pro	cedures for Experiment 1				
Treatment condition (groups)	Phase 1: consistent L–T relation	Phase 2: experimental change in L–T relation	Phase 3: test of conditioning to L		
Consistent (CTL-C, PPC-C)	$L \to T \to \text{food}; L \to T$	$L \to T \to \text{food}; L \to T$	$L \rightarrow food$		
Shift (CTL-S, PPC-S)	$L \to T \to \text{food}; \ L \to T$	$L \to T \to \text{food}; L$	$L \rightarrow food$		

(Bucci, Holland, & Galllagher, 1998)

1 2 3 4 5 6 7 8 9 10

Half-Session Blocks

expected uncertainty

1 2 3 4 5 6 7 8 9 10 Half-Session Blocks

Learning and Inference

Formal Framework NE ACh

Phasic NE: A-J; Sara

detect and react to a rare target amongst common distractors

- elevated tonic activity for reversal
- activated by rare target (and reverses)
- not reward/stimulus related? more response related?

Clayton, et al

Vigilance Model

- variable time in start
- _ controls confusability
- one single run
- cumulative is clearer
- exact inference
- effect of 80% prior

Phasic NE

- NE reports uncertainty about current state
 - state in the model, not state of the model
 - divisively related to prior probability of that state
- NE measured relative to default state sequence start _ distractor
- temporal aspect start _ distractor
- structural aspect target versus distractor

(small prob of reflexive action)

- onset response from timing uncertainty (SET)
- growth as P(target)/0.2 rises
- act when P(target)=0.95
- stop if P(target)=0.01
- arbitrarily set NE=0 after 5 timesteps

Four Types of Trial

fall is rather arbitrary 18

Response Locking

slightly flatters the model – since no further response variability

- set _=0.65 rather than 0.675
- information accumulates over a longer period
- hits more affected than cr's
- timing not quite right

Interrupts/Reset (Shulz)

Discusssion

- phasic NE as unexpected state change within a model
- relative to prior probability; against default
- interrupts ongoing processing
- tie to ADHD?
- close to alerting (AJ) but not necessarily tied to behavioral output (onset rise)
- close to behavioural switching (PR) but not DA
- close to instability (EB)
- phasic ACh: aspects of known variability within a state?

Neuromodulation and Uncertainty

- ACh/NE as expected/unexpected uncertainty signals
- experimental psychopharmacological data replicated by simulations
- implications from complex interactions between ACh & NE
- predictions at the cellular, systems, and behavioral levels
- activity vs weight vs neuromodulatory vs population representations
- irreducible uncertainty vs ignorance

Simulation Results: Posner's Task

Simulation Results: Maze Navigation

ACh/NE

Typical Run

Simulated Pharmacology

Summary

- single framework for understanding ACh, NE and some aspects of attention and learning
- ACh/NE as expected/unexpected uncertainty signals
- experimental psychopharmacological data replicated by model simulations
- implications from complex interactions between ACh & NE
- predictions at the cellular, systems, and behavioral levels
- activity vs weight vs neuromodulatory vs population representations of uncertainty
- Kalman filter; added 'shock' process; also competitive combination
- irreducible uncertainty vs ignorance

ACh in Hippocampus

Given *unfamiliarity*, **ACh**:

boosts bottom-up,

suppresses

recurrent nrocessing Entorhinal cortex Hippocampus Rapid (DG) self-organized representation Self-organized representation Heteroassociative Autoassociative Comparison recall Recall (CA3)(CA1) ACh Regulation of (MS) learning dynamics

(Hasselmo, 1995)

ACh in Conditioning

Given *uncertainty*, ACh:

boosts learning to

ctimuli nf

 Table 1. Outline of procedures for Experiment 1

Treatment condition (groups)	Phase 1: consistent L–T relation	Phase 2: experimental change in L–T relation	Phase 3: test of conditioning to L
Consistent (CTL-C, PPC-C)	$L \to T \to \text{food}; L \to T$	$L \to T \to \text{food}; L \to T$	$L \rightarrow food$
Shift (CTL-S, PPC-S)	$L \to T \to \text{food}; \ L \to T$	$L \rightarrow T \rightarrow \text{food}; L$	$L \rightarrow food$

(Bucci, Holland, & Galllagher, 1998)

Cholinergic Modulation in the Cortex

Electrophysiology Data

(Gil, Conners, & Amitai, 1997)

ACh agonists:

• *facilitate* TC

transmission

• enhance stimulus-

Examples of Hallucinations Induced by Anticholinergic

	Chomicalc	
Scopolamine in normal volunteers	Integrated, realistic hallucinations with familiar	Ketchum et al. (1973)
Intravenous atropine in bradycardia	objects and faces Intense visual hallucinations on eye closure	Fisher (1991)
Local application of scopolamine or atropine eyedrops	Prolonged anticholinergic delirium in normal	Tune et al. (1992)
Side effects of motion-sickness drugs (scopolamine)	adults Adolescents hallucinating and unable to recognize	Wilkinson (1987) Holland (1992)
	relatives	

(Perry & Perry, 1995)

ACh antagonists:

- *induce* hallucinations
- *interfere* with stimulus processing

Norepinephrine

NE specially involved in **novelty**, confusing association with attention, vigilance, selective attention

Approximation

approximation is not catastrophic compared with a simpler, algorithm