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Proximal vs Distal Models

Proximate = HOW

The ‘proximal’ school attempts to understand the mechanisms by
which the behaviour or structure is controlled or physically generated.

How does a limb moves?

Which brain structures are involved?

What is the biochemistry and physics of muscle?
What 1s the neural architecture of movement control?
How: 1s bone deposited or absorbed?

How does the brain make consciousness?

What causes death?

How does the genotype lead to the phenotype?




Distal = WHY

The “distal” school attempts to understand the evolutionary
function of an animal’s (including human) behaviour or
structure.

Why does the animal behave that way?
Why are bones the shape they are?
Why do we have consciousness?

Why do we die?

In short, what are the selective pressures that have led to
the evolution of the current phenotype? In this sense the
genotype is merely a ‘depository’ of the information needed
to make fit phenotypes.




Why can we ask why ?

Organisms are complex adaptive systems.

They respond to their environment by self-modification of
structure and/or behaviour.

This occurs over evolutionary periods, over individual
lifetimes, and over social time.

It 1s called development, adaptation, learning.
Adaptive systems have rules or goals or principles (distal

explanations), which lead to self-modification and may be
stochastic. Not teleology !




Distal explanations cannot be
provided by proximal causes

Why did the chicken cross the road ?

Chickens, over great periods of time, have been naturally selected i
such a way that they are now genetically disposed to cross roads.




Why do birds ly?

A proximalist approach might be to discover the detailed structure of a
bird’s wing such as the bones, feathers, blood supply, and the neural
circuits imvolved in controlling flight muscles etc. Ultimately, perhaps the
proximalist might also want to know the genes invelved in the embryonic
development of wings and their control in flight. In essence, the
proximalist really wants to know how birds fly the way they do.

The distalist is interested in the evolutionary advantages of flight -- how:
does flying enhance survival? What were/are the selective pressures that
led to flight? What is the foraging range? Which predators are avoided or
encountered by flight? What are the trade-offs between size and energy
needed for flight, and' caloric intake, etc. The distalist wants to know why:
birds fly the way they do.




Why do we make saccadic eye movements?




Saccade Velocity Trajectories
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Proximalist Approach

Because of the neuro-muscular control circuitry i the brainstem
and the extraocular muscles which allow the fovea to be
redirected to a new target.

The fundamental question 1s what 1s the complete neuro-chemical
cireuit.




Distalist Approach

There are an infinite number of ways the fovea could
be redirected.

The observed stereotypical behaviour reflects a
system that has evolved to maximize fitness. This 1s
then coded by the neural circuitry.

The fundamental question 1s what 1s the fitness
criterion (fitness function, cost function, performance
mdex) and the constramts.




The Assumption of Optimality

In competitive environments organisms compete for resources.
Genes that lead to fitter behavioural strategies will preferentially
populate the gene pool. Fitness will increase until some limit is
reached (for a given environment). The behavioural strategy will
then be optimal (maximal fitness).

Behavioural strategies may be learnt/adaptive, in which case the
the learning process/adaptive controller is genetically determined.
In either case behaviour is genetically influenced.

In stationary environments we expect that behaviours tend towards
maximal fitness in the long run.




SEX

One important exception is sexual behaviour. To attract a mate, an
individual may have reduced survival fitness. This still improves
overall fitness.

The Peacock’s tail.







Fitness and Surrogate Cost Functions

It 1s difficult to measure fitness directly — we need to track offspring
etc. However, survival (longevity) is often considered to be a good
indication of fitness (but there are exceptions viz: ‘inclusive
fitness’).

‘Survival of the fittest” in a competitive (non-cooperative)
envitonment would a priori be enhanced by some primary factors:
* Speed
» Energy efficiency (mechanical & metabolic work)
* Accuracy

But other factors may also be important (as constraints), such as
» Complexity & brain size
» Information capacity
» Biophysics & thermodynamics




The Forward (engineering) Problem

b b
Given an integral cost  J =fL(x,y,y')dx + )»fg(x,y,y')dx

Find the optimal trajectory ¥ (x) that minimizes (maximizes).J

Answer:

oL + MY 8ld\ La((L +Ag) 0

Euler-Lagrange Eqn: 0y aydix | ‘WJ k 9y’

(Or use Pontryagin’s maximum principle with inequality constraints)




The Inverse (biological) Problem

b b
Assuming an integral cost J =fL(x,y,y')dx + )»fg(x,y,y')dx

Using measurements y(x)

Find the Lagrangian L(x, y,y") and constraint g(x, y, y )
that 1s minimized (maximized) by y(x)

Answer: mathematically ill-posed




A 4

[ Guess a biologically plausible Lagrangian ]

\ 4
Solve Forward Problem

Compare to
data

v good fit
Make Predictions




Problems

. Difficult to solve for real plausible cost functions.

. No iterative schemes, difficult to. move onward.

. What constitutes a good/bad fit ?

. Problem of implicit assumptions (boundary conditions).

. Resources / immature discipline: still at proximal level.




Some Possible Lagrangians

Minimum Time

Minimum Jerk

Minimum Motor Command Energy L(.) = u"(¢)

‘Minimum Variance” L(.) = Var{y(T )}

with Poportional noise O, = ku(?)
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Minimum Variance Model
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Harris & Wolpert, 1998, Nature
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Neuromuscular
Transfer Function -

p(f)

c x" +c x4+ cx=u(t)
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Aperiodic Fourier Analysis
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. DisE:rete, aperiodic functions have zeroes in their Fourier amplitude and
energy spectra at frequencies that depend on the separation in time of
onset and offset discontinuities (e.g. Harris, 1998).

* The slope of the energy envelope also characterizes the discontinuities.
28



Velocity

Discriminating Trajectories With Spectral Minima
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More generally, frequency spectra of brief, aperiodic functions have
energy minima at frequencies M1, M2, M3 etc. that depend on the
type of onset and offset discontinuities, as well as their separation in
time, and overall movement shape (Harris, 1998, 2004).

These minima are a biologically practicable way of discriminating
between similar time-domain models (Harwood et al., 1999).
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Composite Cost Functions

So far we have needed to specily movement duration, but
why do movements have the observed durations ?

Consider a new: ‘composite’” Lagrangian: L (.) =1+ kL(.)

The new cost now also penalises time

J' =}[1 kL) Wx =T +kJ




Predicted Observed
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2 — Dimensional Saccades
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The Problem of “Arbitrary Hypothetical Constraints’

H.K. Reeve & P.W. Sherman, Optimality and phylogeny: a critique
of current thought. In Adaptation and Optimality, eds. S.H.Orzack &
E. Sober, 2001, Cambridge University Press, Cambridge, pp. 64-113.

When solving forward models it usually necessary to make
assumptions about constraints.

This usually means setting values to context variables, such as
boundary conditions.

These variables strongly affect the optimal selution, and it 1s
important that they are explicitly chosen.

We consider a simple example:




Minimum Square Derivatives

Simple & tractable. Still widely considered in robotics
and prosthetics.

minimum acceleration

T4 2 n=2
J = dt n =3 minimum jerk
o)

dt” minimum snap, etc..
. . . _ d2nx
Optimal trajectory is given by: e x? =0
l_ n

which is a polynomial: x=a,+at+L a,, "

with 2n degrees of freedom.

38



Boundary Conditions

2n-1
x=a,+at+L a, .t

 we need to specify 4.4,k a,,,

* a basic constraintis: x(0)=x,, x(T)=x;
since we are considering a movement.

 but we still have 2n-2 d.of.’s

39



MSDs

Minimum Acceleration (MA)

x(t) = a, +at+a,t’ +at’

The usual assumptionis that x(0)=0, x(7)=4
¥ x(0)=0, xV(T)=0

Which is sufficient to constrain the polynomial

x@)_——Q/TY A@/T)

xV(t)=34(/T)-340/TY
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MSDs

Minimum Jerk (MJ)

x(t)=a, +at+at’ +at’ +at’ +ar’

The usual assumption isthat ~ X(0)=0, x(7)=4
Y x7(0)=0, xV(T)=0
¥ x2(0)=0, x?(T)=0

x(t)=-104@/T) +154¢/T) =64/ TY

xV(#)==304@/T) +604(/T) -304(¢/TY




Cost of Discontinuities

The boundary conditions determine which
discontinuities are allowed, or not allowed.

Why should  x*(0)=0, x*(T)=0 2

We could find the optimal trajectory
without these BCs.

Or, we could even specify more than 2n
BCs.

Let us attach a ‘cost’ to the discontinuities,
then we can solve for the optimal
trajectory.

42
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Where do BCs come from?

Physical BCs
Hitting objects, bringing lips together, etc.

Neuromuscular BCs

u (t) Neuromuscular | X (t )
Transfer Function

(m)

c x4+ x" V4. cx=u(r)

m

uiy x(0) 4
— J

>

t

t

These can be measured using Fourier analysis m=3.5- 4

>
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Bio-Mimicry or Bio-Inspiration ?

Human movements are NOT minimum jerk !

but even if they were, which one ?
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Summary

Distal models
Attempt to explain why behaviours occur, not how (proximal models).

The ‘assumption of optimality’

By appealing to natural selection, the null hypothesis is that behaviours are
optimal or tend towards optimal (at least when gene and organism fitness are
congruent):

The inverse optimality problem

The fundamental problem is finding Nature’s [Lagrangian (cost function) and
constraints. This is ill-posed and currently we use a trial and error approach..

Saccades

We explored different cost functions and showed that minimum variance was
the best and could also explain arm reaching behaviour. There was some
convergence for very brief movements.




 Composite costs

Adding a time penalty extended the predictions to include the
main sequence and 2-dimensional movements (straight lines and
component stretching)

* Arbitrary hypothetical constraints

Different boundary conditions (BCs) can lead to completely
different optimal trajectories. So the choice of BCs requires
justification 1n any distal model to aveid the. Mathematical

convenience 1S no justification. A critical eye is needed'!

* Bio-mimicry vs Bio-inspiration




Conclusions

Distal modelling 1s an exciting endeavour leading to rich
sets of hypothesis about fundamental invariants in
behavioural neuroscience.

A disciplined approach is needed, and a critical eye for
implicit assumptions.

We need to be careful that we do not blindly: follow
nature without understanding her !




“Look. YWe know how you did it —
how is no longer the question. VWhat we now
want to know is why. ... Why now, brown cow!”

49






Thus many phenomena can be explained by the composite
time and variance cost function, but why 1s the specific
trade-off observed?

Is 1t because of how speed and accuracy affect overall
fitness 1n real environments?

Is there a deeper significance in which variance and time
are components of some more fundamental cost. Indeed
why 1s proportional noise present in the first place?




Methods

Finger movements were recorded using a CODA system
(Charnwood Dynamics) at 400 Hz resolution ~0.1 mm.

3 subjects made ‘rapid and
accurate’ movements from a
start marker to an end region
of different sizes and distances.

e 25 trials in each of 16 blocks:
(8,16,32,64 cm ) distances x
(1,2,4,8 cm) sizes.




Not touching the surface
avolded onset and offset
discontinuities

Horizontal signal was
analysed using a padded

cosine windowed FFT.

Minima and maxima were
examined.
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Reaching Temporal ‘Main Sequence’
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Saccades Temporal ‘Main Sequence’
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Reaching Spectral ‘Main Sequence’
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Comparing Saccades to Arm Reaching

5.

\

_19

arms

saccades

5 .

Envelope slopes =-6.92, -7.00, -7.28, which 1s similar to
saccades (-7) and 1s neither minimum jerk (-8) nor minimum
acceleration (-6).

It 1s possible that slopes could be -8 1f we had more frequency
resolution, but this would still not be minimum jerk.
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Neuromuscular
Transfer Function

u(t) x(1)

3)

(2)
C X+ CyX

(D

+cx " +cyx=u(t), c,small

t 1 —_—

This can be fit by the minimum variance model
( Harwood et al, J Neurosci, 1999; Harris & Wolpert, Nature, 1998

But the same plant model would be needed for arms and saccades !!
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