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The present text is the enlarged version of the preparatory course which was
taught on June 9, as an introduction to the dynamical system mini-course of the
summer school.

We present some basic definitions first on discrete dynamical systems, then
on systems of ordinary differential equations, and finally on the relations between
them. In order to make the text as self-contained as possible, an appendix on
calculus has been added.

1 Discrete dynamical systems

1.1 From a mathematical point of view, the definition of a discrete dynamical
system is incredibly simple: it is just a map from any set in itself.

The set is called the phase space; it represents all the possible states of the
system under study. We shall denote it by M , and we give ourselves a map

F : M →M,

which is supposed to describe the evolution of the system between any two instants
of time: it sends a point p of M (a state of the system at a given instant) onto a
new point F (p) (the new state of the system, at the next instant).

We are interested in the long-term evolution of the system. Thus, if the initial
state of the system is known, we need to apply the map F to get the next state,
and to apply it again to know what happens after this, and again, i.e. to iterate
the map F .

What is discrete here is the time:1 measuring the state of the system at time
t = 0, then t = 1, and then t = 2 . . . (with a given unit of time), we get a sequence
of results p0, p1, p2, . . . satisfying the induction formula

pn+1 = F (pn).

1Discrete as opposed to continuous—see Section 2.

1



We are thus modelling a deterministic process: as soon as the initial state p0 is
known, the future evolution of the system is determined, namely p1 = F (p0) at
time 1, p2 = F (p1) = F (F (p0)) at time 2, p3 = F (p2) = F (F (F (p0))) . . . ; only the
initial point p0 is arbitrary.

1.2 A simple example is the growth of a population with a fixed fertility rate λ > 1:
the state of the system is completely described by the number pn of individuals at
generation number n, which obeys the law

pn+1 = λpn

(which amounts to saying that the number of individuals at generation n+ 1 is λ
times the number at generation n). Another example is the disintegration law of
a radioactive substance: assuming that a proportion µ of nuclei is transformed
between two measurements, we find that the quantity p of radioactive substance
obeys the law

pn+1 = pn − µpn.

In both cases, one can take M = R+, the set of non-negative real numbers, and
F (p) = λp, with λ = 1 − µ ∈ ]0, 1[ in the second example.

In both examples, starting with an arbitrary p0 > 0, we find the exponential
law2

pn = λnp0,

which describes unbounded proliferation when λ > 1 (then pn tends to infinity as
n→ ∞), or extinction when 0 < λ < 1 (then pn → 0).

1.3 But these examples are terribly simple. There is in general no closed formula
relating the state pn at time n and the initial state p0, even if the map F does not
look too complicated.

Figure 1 shows3 what happens with the so-called “standard map” (a famous
model of mathematical physics, but we shall not discuss what this model is for):
here, two variables x and y are needed to describe a point p of the phase space,
and the map is

F (x, y) = (x′, y′),

∣
∣
∣
∣
∣

x′ = x + y + ε sin x

y′ = y + ε sin x
(1)

(the positive number ε is a fixed parameter).
Given an initial state (x0, y0), we can compute x1 = x0 + y0 + ε sin x0, y1 =

y0 + ε sin x0, and then x2 = x1 + y1 + ε sin x1, y2 = y1 + ε sinx1 = y0 + ε sinx0 +
ε sin(x0 + y0 + ε sin x0), but the formulas get more and more complicated pretty
quickly, and it is for large n and arbitrary (x0, y0) that we’d like to know the
behaviour of (xn, yn)! Figure 1 shows, in different colors, 11 initial conditions and

2The sequence {λnp0} is a geometric progression with ratio λ, but we call this an exponential
law because λn = ean with a = log λ.

3Warm thanks to Ph. Robutel, who kindly accepted to make this picture for this course!
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Figure 1: 11 orbits of the standard map, with ε = 0.9.
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the next 5000 points they give rise to: the behaviour of this systems indeed seems
quite complicated. . .

1.4 In the general abstract situation F : M → M , any point p of M can be
considered as an initial condition p = p0, corresponding to the state of the
system at the origin of time. The future evolution of the system is then determined
as a sequence {p0, p1, p2, . . .} = {pn}n∈N, which is called the forward orbit of p.
At time n ≥ 1,

pn = F (F (· · ·F
︸ ︷︷ ︸

n times

(p0) · · · )) = F n(p0).

This is the definition of a map F n : M →M , which is the nth iteration of F and
which describes the evolutions of the systems between two instants separated by
n units of time; we also define F 0 = Id, the identity map of M (i.e. F 0(p) = p: if
the initial condition is p, then the state at time 0 is still p!).

The maps we shall be interested in will be invertible: there exists a so-called
reciprocal map G : M → M such that F (G(p)) = p for any p. In other words,
for any initial condition p0 = p, the past evolution is also uniquely determined:
we had p−1 = G(p) at time −1, and previously p−2 = G(G(p)) . . . It is convenient
to set F−1 = G, and more generally F−n = Gn. The bi-infinite sequence {pn =
F n(p)}n∈Z is then called the complete orbit of p.

The (obvious) property F n(F `(p0)) = F `+n(p0) can be written

F n ◦ F ` = F `+n

(using the symbol ◦ for functional composition). It amounts to saying that, when
we take an arbitray point F `(p0) on the orbit of p0 as new initial condition we get
the same orbit, except for the time-shift n 7→ ` + n. Each orbit thus represents a
possible history of the system, on which the choice of the origin of time is arbitrary,
and the phase space can be regarded as the disjoint union of the orbits (each point
of the space belongs to one orbit, namely to its own orbit, but to no other). The
theory aims at understanding all the possible behaviours of the system, i.e. the
various types of orbits and their arrangement one with respect to the other.

An orbit may be reduced to a single point: this happens if and only if F (p0) =
p0, the point p0 is then called a fixed point of F (or an equilibrium: if the system
is in this state at some instant, in fact it stays in this state forever). For instance,
the point (0, 0) is a fixed point of the aforementioned standard map—can you find
another one? (remember that the sin function vanishes at 0 and π.)

An orbit may be reduced to a finite sequence of points {p0, p1, . . . , pN−1}, i.e.
it may happen that pN and the initial condition p0 coincide, but then pN+1 and p1

must also coincide, etc. (because the system is deterministic: whenever you are at
a point p0, you must be at p1 = F (p0) at the next instant). This happens if and
only if p0 is a fixed point of FN ; its orbit is then called N-periodic (the system
passes through the states p0, p1, . . . , pN−1, and then indefinitely repeats this finite
sequence of states in the same order: F `+kN(p0) = F `(p0) for all ` ∈ {0, . . . , N−1}
and k ∈ Z).
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On figure 1, we can guess that the point (0, π) has a 2-periodic orbit.4 Looking
at the picture, can you guess in what region of the phase space we can find a
4-periodic orbit, a 8-periodic orbit, or a 10-periodic orbit?

1.5 The complexity of the system depends on the number of variables needed
to describe a state, i.e. on the dimension of the phase space. The dimension
was 1 in our first examples in § 1.2, and it was 2 for the standard map of § 1.3,
which was already a pretty complicated system. But to model a real system one
sometimes needs much more dimensions, which makes things harder to analyse
and to visualize. . .

The complexity depends also on the shape of the map F . The simple examples
of § 1.2 can be generalized to an arbitrary number of dimensions by what is called
a linear system. Here, we let d ≥ 1, and the phase space is Rd = R × · · · × R,
i.e. a point p is determined by d real numbers (its coordinates), which we find
convenient to write in a column

p =








x1

x2
...
xd







.

We consider a map F of the form

F (p) =








a1,1x1 + a1,2x2 + · · · + a1,dxd

a2,1x1 + a2,2x2 + · · · + a2,dxd

...
ad,1x1 + ad,2x2 + · · ·+ ad,dxd







,

where the coefficients ai,j are fixed real numbers. The system is thus completely
determined by these numbers, that we find convenient to write in a matrix

A =








a1,1 a1,2 · · · a1,d

a2,1 a2,2 · · · a2,d

...
. . .

ad,1 ad,2 · · · ad,d







.

This is the definition of the linear map from Rd into itself associated with the
matrix A; one usually writes F (p) = A · p.

4In fact, (x0, y0) = (0, π) implies that (xn, yn) = (nπ, π), which is not a periodic orbit in R×R,
but it is natural here to consider the first variable as an angle, i.e. to identify any two points the
first coordinate of which differ by an integer multiple of 2π (because the system depends on x
only through sin x, which is a 2π-periodic function of x). With this convention (x2, y2) = (2π, π)
and (x0, y0) are identified.

The whole figure 1 was made with that convention: each time a point (xn, yn) was computed,
an appropriate multiple of 2π was substracted from the first coordinate in order to yield a point
in [0, 2π[ × R. We should consider as the true phase space of this system the set S1 × R, where
S1 = R/2πZ is the circle (with angular coordinate x).
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Linear algebra helps us to iterate such a map in a very efficient way, by simply
manipulating the matrix A. For instance, it tells us how to recognize whether the
map is invertible (as defined in § 1.4) by computing a certain combination of the
coefficients ai,j (the so-called determinant of the matrix). It tells us that iterating
n times the map F amounts to multiplying n times the matrix A by itself, where
multiplication of matrices is defined by certain rules, so that F n is itself a linear
map: F n(p) = An · p, where An is a certain matrix.

But it also tells us how one can compute the matrices An for all values of n.
Quite often it is indeed possible to diagonalize the matrix A, i.e. to reduce the
situation to the simplest possible form:

A =








λ1 0 · · · 0
0 λ2 · · · 0
...

. . .

0 0 · · · λd







, F :








x1

x2
...
xd








7→








λ1x1

λ2x2
...

λdxd







, (2)

in which case we simply find d independent exponential laws

An =








λn
1 0 · · · 0
0 λn

2 · · · 0
...

. . .

0 0 · · · λn
d







, F n :








x1

x2
...
xd








7→








λn
1x1

λn
2x2
...

λn
dxd







.

The complete analysis of such a system is then easily achieved.
The reduction of the system to the diagonal form (2) is done by a linear change

of coordinates, which may be not so easy to find, but this task needs to be per-
formed only once and then all the orbits are easily determined!

1.6 Here is a simple example with 2 dimensions: suppose the coordinates of p and
those of p′ = F (p) are related by the linear formulas

x′1 = −3x1 + 7x2, x′2 = −
7

2
x1 +

15

2
x2.

A little practice in linear algebra will lead you to define new coordinates

X1 = −x1 + 2x2

X2 = x1 − x2,

from which the old ones can be recovered by the formulas

x1 = X1 + 2X2

x2 = X1 +X2.

If p =
(

x1
x2

)
has new coordinates

(
X1
X2

)
, then F (p) =

( x′

1

x′

2

)
has new coordinates

∣
∣
∣
∣
∣
∣

X ′
1 = −x′1 + 2x′2 = −4x1 + 8x2 = 4X1

X ′
2 = x′1 − x′2 =

1

2
x1 −

1

2
x2 =

X2

2
.

(3)
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Figure 2: A linear system in 2 dimensions.

In other words, the matrix A =
( −3 7
− 7

2
15
2

)
is brought to the diagonal form D =

( 4 0
0 1

2

)

by the change of coordinates
(

x1
x2

)
7→

(
X1
X2

)
. We can then describe all the orbits of

the system:

– There is a fixed point at the origin (as always with linear systems).

– Two special families of orbits correspond to the vanishing of one coordinate

Dn ·

(
0
X2

)

=

(
0

2−nX2

)

, Dn ·

(
X1

0

)

=

(
4nX1

0

)

.

This means that if the system starts on the axis {X1 = 0}, then it stays on it
forever: the corresponding straight line in the original coordinates E (s) = {−x1 +
2x2 = 0} is said to be invariant by F (and similarly for the axis {X2 = 0}, which
corresponds to the straight line E(u) = {x1 − x2 = 0}). Observe that the forward
orbit of a point on {X1 = 0} tends to the origin (simply because 2−n tends to 0 as
n → +∞), whereas the forward orbit of a point on {X2 = 0} escapes to infinity;
however, the second kind of point is characterized by the fact that the backward
orbit tends to the origin (because 4n tends to infinity as n→ +∞, but tends to 0
as n→ −∞). One can say that the point of {X1 = 0} are attracted by the origin
and that those of {X2 = 0} are repelled by the origin.5

– A general initial condition with X1 6= 0 and X2 6= 0 does not give rise to an orbit
contained in a fixed straight line, but formula (3) shows that X ′

1(X
′
2)

2 = X1(X2)
2,

thus these orbits are contained in the curves {X1(X2)
2 = constant}, which corre-

spond to hyperbola-like curves in the original coordinates—see Figure 2. In other
words, the function ϕ which associates the value X1(X2)

2 with any point of the
phase space satisfies

F ◦ ϕ = F,

5This is a linear instance of the so-called stable or unstable manifolds to be encountered in
Section 4.
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and is called a conserved quantity for that reason; its level curves {ϕ(p) =
constant} are thus invariant by F .

1.7 The numbers λ1, . . . , λd in (2) are called eigenvalues. As we saw in the
previous 2-dimensional example, eigenvalues with absolute value smaller than 1 are
related to contraction and attractive behaviour along the corresponding directions,
whereas eigenvalues with absolute value larger than 1 are related to dilatation and
repulsive behaviour.

It may happen that diagonalisation is not possible with real eigenvalues but
the system admits complex eigenvalues. The simplest case is

A =

(
cosω − sinω
sinω cosω

)

,

for which λ1 = eiω, λ2 = e−iω. The associated linear map is a rotation of angle ω
in the plane; the nth iterate is then a rotation of angle nω:

An =

(
cos(nω) − sin(nω)
sin(nω) cos(nω)

)

.

As a rule, non-real complex eigenvalues come in pairs of conjugate complex num-
bers and correspond to oscillatory behaviour. Rotation can be combined with
contraction or dilatation; the reader may try to analyse the orbits of the linear
map of matrix

A =







1
2
cosω −1

2
sinω 0 0

1
2
sinω 1

2
cosω 0 0

0 0 2 cosω −2 sinω
0 0 2 sinω 2 cosω






.

Sometimes, diagonalisation is not possible at all, even with complex numbers,
but linear algebra provides us with enough tools to deal with any linear system
in any dimension, in a fashion which is almost as satisfactory as in our simple
examples.

Non-linear systems are usually much more difficult to understand. Still, one can
sometimes find invariant curves, or invariant higher-dimensional invariant surfaces,
or special orbits which are attracted or repelled by a fixed point or by a periodic
orbit, etc., which help us to understand how the orbit are arranged in the phase
space.

2 Differential equations and vector fields

Differential equations give rise to dynamical systems with continuous time, but
this requires a more elaborate mathematical apparatus, since we need to rely
on concepts like differentiability and derivatives. The reader is referred to the
appendix for a brief reminder concerning the notions of open subsets, continuous
and continuously differentiable functions, parametrised curves, etc.
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2.1 We shall deal with systems of autonomous differential equations of
order 1, i.e. systems of equations of the form

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dx1

dt
=f1(x1, x2, . . . , xN)

dx2

dt
=f2(x1, x2, . . . , xN)

...

dxN

dt
=fN (x1, x2, . . . , xN).

(4)

Here N ≥ 1 is an integer (the dimension) and f1, f2, . . . , fN are functions. Each
fi is a real-valued function of N real variables, defined on R

N or maybe on a
subset Ω of RN , which is then supposed to be open. We shall always assume that
the functions f1, . . . , fN are continuously differentiable.6

The open subset Ω of RN on which the right-hand side of the system (4) is
defined is called the phase space. Like in the discrete case (§ 1.1), it represents
all the possible states of the system.

We have a solution of the system (4) whenever we have N differentiable func-
tions x1, . . . , xN : I → Ω, where I is an open interval of R, such that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dx1

dt
(t) =f1

(
x1(t), x2(t), . . . , xN (t)

)

dx2

dt
(t) =f2

(
x1(t), x2(t), . . . , xN (t)

)

...

dxN

dt
(t) =fN

(
x1(t), x2(t), . . . , xN(t)

)
.

for all t ∈ I. In other words, in place of x1, . . . , xN (which are independent
variables from the point of view of the functions fi), one must substitute unknown
functions x1, . . . , xN of the independent variable t. This variable t is called time
because this is what it is supposed to represent.

It is convenient to group together the functions in the right-hand side and to
consider the vector-valued function

f = (f1, . . . , fN) : Ω → R
N ,

which is called the vector field associated with (4). We also group together
the components of a solution: a solution is then viewed as a parametrised curve7

γ : I → Ω, t 7→ γ(t) =
(
x1(t), . . . , xN(t)

)
, such that

dγ

dt
(t) = f

(
γ(t)

)
(5)

6See the definition in § 5.3.
7See the definition in § 5.7.

9



for all t ∈ I.
“Vector field” simply means that at each point p of the phase space we are

given a vector f(p). We may think of γ(t) as of a mobile point which is asked
to follow the “infinitesimal trend” which is indicated by the vector field at each
instant of time: equation (5) means that the velocity vector8 at time t must equal
the given vector at the location γ(t) reached by the mobile point.

We are thus describing the time-evolution of the system by a solution γ =
(x1, . . . , xN ) of (4), which is equivalent to (5). The state of the system at time t is
represented by a point γ(t) in the phase space, which moves continuously according
to the law (5) as time varies. Such a system is deterministic: we shall see in § 2.5
that, as in the discrete case, the evolution of the system (past and future) is
completely determined as soon as the state is known at a given instant of time.

2.2 Here is an example discussed in [HW], Part 2, pp. 19–20. In order to model the
fluctuations in the populations of sardines and sharks, the Italian mathematician
Volterra proposed the following system of differential equations

∣
∣
∣
∣
∣
∣
∣

dx1

dt
= ax1 − cx1x2

dx2

dt
= − bx2 + dx1x2,

(6)

where a, b, c, d are positive parameters.
Here x1 represents the number of sardines and x2 the number of sharks,9 and

these two positive numbers completely describe the state of the system (thus
Ω = ]0,+∞[ × ]0,+∞[). The idea is that in the absence of sharks, the sardines

would tend to proliferate: the rate of increase of their population
dx1

dt
would be

proportional to their number x1, hence the term ax1; symmetrically, in the absence
of sardines, the sharks would not survive and it is assumed in this model that the
rate of decrease of their population would be proportional to their number x2,
hence the term −bx2. But there is an interaction between the two populations
(best appreciated by sharks), which tends to decrease x1 and to increase x2, hence
the terms −cx1x2 and dx1x2 (proportional to the total number x1x2 of possible
encounters).

It turns out that all the solutions of (6) are periodic functions of time (but they
have not all the same period), which fits satisfactorily with the periodic fluctuations
observed when fishing.

2.3 A periodic solution of (5) is a solution t 7→ γ(t), defined for all real values
of t, for which there exists a positive number T > 0 such that

γ(t+ T ) = γ(t)

8See the definition in § 5.7.
9Of course, in this mathematical model, we forget that the numbers of individuals should be

integer numbers and treat them as real numbers which change continuously, an approximation
which is tolerable when these numbers are large enough. In fact an integer-valued function cannot
be continuous (nor differentiable), unless it is constant.
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(compare with the definition of periodic orbits of discrete systems in § 1.4).
An equilibrium point of (5) is a constant solution, i.e. a point p0 of the phase

space such that t 7→ γ(t) = p0 is a solution. Since we then have γ ′(t) = 0 for all t,
this is equivalent to having f(p0) = 0: the vector field must vanish at p0.

Observe that Volterra’s prey-predator system (6) has exactly one equilibrium
point: ( b

d
, a

c
). Maybe the reader wonders how we know that all the other solutions

of this system are periodic; this is related to the existence of a first integral.
A first integral of the system (5) is a differentiable function on the phase

space, G : Ω → R, such that

dG(p) · f(p) = 0, p ∈ Ω (7)

(the left-hand side is the differential of G at p, which is a linear map from RN

to R, evaluated on the vector f(p) ∈ RN ; it is equivalent to say that the function
∂G

∂x1

f1 + · · ·
∂G

∂xN

fN vanishes identically—see § 5.2). In view of (5) and according

to formula (21) in the appendix, this is equivalent to d
dt

[
G

(
γ(t)

)]

|t=t0
= 0 for any

solution γ at any t0, i.e. to the fact that t 7→ G
(
γ(t)

)
is a constant function for

any solution γ, hence:

A first integral is a function which takes the same value along any
solution of the system.

(Compare with the definition of a conserved quantity for a discrete system in § 1.6.)
Level sets of first integrals are examples of invariant sets. A subset Σ of the

phase space is said to be invariant for (5) if, whenever a solution has a point in Σ,
all this solution is contained in Σ (more precisely: for any solution γ : I → Ω, the
existence of a t0 ∈ I such that γ(t0) ∈ Σ implies that γ(t) ∈ Σ for all t ∈ I).10

Thus, G is a first integral if and only if, for every c in the range of G, the level set
Σc = { p ∈ Ω | G(p) = c } is invariant.

In the case of system (6), one can check that the formula

G(x1, x2) = xb
1x

a
2 e−dx1−cx2

defines a first integral (§§ 5.3–5.4 and § 5.6 contain enough information to lead
you to ∂G

∂x1
(x1, x2) = xb−1

1 xa
2(b−dx1) e−dx1−cx2, and a similar formula for ∂G

∂x2
(x1, x2),

from which (7) follows). This is sufficient to draw all solutions of (6), since the
level sets {G = constant} are curves in Ω, and they must be invariant. It turns out
that these level sets are closed curves; for each solution, the corresponding mobile
point is constrained to travel periodically along the curve in which the solution is
contained—see Figure 3.

When dealing with systems of dimension N ≥ 3, finding a first integral is not
the end of the story, since its level sets will not be invariant curves but invariant
“hypersurfaces”, i.e. invariant subsets of dimension N − 1, on which there is room

10If you know what a submanifold is, you can check that a closed submanifold Σ of Ω is
invariant if and only if, for each p ∈ Σ, the vector f(p) belongs to the tangent space to Σ at p.
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curve {G = constant }

Figure 3: Periodic motions for Volterra’s prey-predator system.

for all kinds of solutions. Still, it is worth finding as many first integrals as you can,
or more generally invariant subsets of dimension as small as possible, in order to
deal with “subsystems” of smaller dimension whenever possible—this may reduce
drastically the complexity of the problem under study.

2.4 It is sometimes necessary to consider systems of non-autonomous differ-
ential equations, i.e. systems more general than (4) because the right-hand side
also depends on time:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dx1

dt
=f1(x1, x2, . . . , xN , t)

dx2

dt
=f2(x1, x2, . . . , xN , t)

...

dxN

dt
=fN(x1, x2, . . . , xN , t).

(8)

The corresponding vector-valued function

f = (f1, . . . , fN) : Ω × R → R
N ,

is called a non-autonomous vector field, and the analogue of equation (5) is

dγ

dt
(t) = f

(
γ(t), t

)
. (9)

Imagine for instance that we want to model the effect of fishing on the pop-
ulations of sardines and sharks interacting according to (6). We may include in
the right-hand side terms which contribute to decrease these populations, with
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efficiency rates λ and µ:

∣
∣
∣
∣
∣
∣
∣

dx1

dt
= ax1 − cx1x2 − λx1

dx2

dt
= − bx2 + dx1x2 − µx2.

If λ and µ are positive constants, this simply amounts to using new parameters
a− λ and b+ µ instead of a and b (which modifies the location of the equilibrium
point, for instance), but maybe we want to incorporate in the model periodic
fluctuations of the fishing activity according to seasons, or non-periodic changes
related with demography and economics. . . we then end up with

∣
∣
∣
∣
∣
∣
∣

dx1

dt
=

(
a− λ(t)

)
x1 − cx1x2

dx2

dt
= −

(
b+ µ(t)

)
x2 + dx1x2,

where the dependence on time in the right-hand side corresponds to external
changes in the system (as opposed to internal changes of state modelled by the
differential equations themselves).

2.5 The fundamental result of the theory is the Cauchy-Lipschitz theorem, which
asserts the existence and unicity of the solution as soon as an initial condition
is prescribed:

If Ω is an open subset of RN and f : Ω × R → RN is continuously
differentiable, given any p0 ∈ Ω and t0 ∈ R, there exists a unique
solution t 7→ γ(t) of (9) such that γ(t0) = p0.

The solution is not always defined for all t ∈ R (even in the autonomous case):
depending on p0 and t0, there is a maximal interval I on which the solution is
defined and satisfies the system of differential equations (of course this interval
contains t0).

Indeed, it may very well happen that the mobile point corresponding to the
solution gains more and more speed and that it reaches infinity (or the boundary
of Ω) in finite time. For example, consider the autonomous differential equation
dx

dt
= x2 with R as phase space: it is easily seen11 that the only solution defined for

all times is the constant solution γ(t) = 0 associated with the equilibrium point at
the origin, while if x0 > 0 for instance, the maximal solution γ such that γ(0) = x0

is t ∈ I 7→ γ(t) =
x0

1 − tx0
with I =

]
−∞,

1

x0

[
.

This phenomenon never happens with linear systems, i.e. when the vector
field f is defined by a matrix-valued function t 7→ A(t) = [ai,j(t)]1≤i,j≤N according

11In the autonomous case with N = 1, say dx
dt

= f(x), the formula t = t0 +
∫ γ(t)

x0

dx′

f(x′) is

available, which only requires a quadrature, and we are left with the comparatively easy problem
of inverting the relation γ(t) 7→ t.
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to the formulas

fi(x1, . . . , xN , t) = ai,1(t)x1 + ai,2(t)x2 + · · ·+ ai,N (t)xN , i = 1, . . . , N. (10)

One can prove that all the solutions of such a linear system are defined for all
times.

Sometimes, when dealing with a non-linear system, one can find a “trapping re-
gion”: a closed subset C of the phase space with the property that at the boundary
points of C the vector field points inside C (or is tangent to C); in that situation,
for all p0 ∈ C and t0 ∈ R, the forward solution is defined without restriction on the
whole of [t0,+∞[ and stays confined in C (because it cannot escape, so to speak).

3 The dynamical system point of view on differ-

ential equations

The theory of dynamical systems with continuous time can be described as the
qualitative theory of differential equations; it aims at understanding all the possible
behaviours of the system under study, although it is usually impossible to write
explicit formulas for the solutions of differential equations. Rather than studying
the solutions one by one, we try to define relevant geometric properties of the
vector field; in fact, we already began, with the definition of first integrals, invariant
subsets, trapping regions. Our main goal here will be to show the relation with
discrete dynamical systems.

3.1 Let us consider a non-autonomous vector field f : Ω × R → R as in § 2.4.
To simplify the discussion, we shall assume that all the solutions are defined for
all times—such a vector field is said to be complete—, but this restriction is not
essential.

The Cauchy-Lipschitz theorem allows us to define a family of maps from Ω in
itself as follows. Given t0, t1 ∈ R, we define the flow map Φt0 ,t1 : Ω → Ω by
considering, for any point p, the solution γ with initial condition p at time t0, i.e.
p0 = γ(t0), and following it until time t1:

Φt0,t1(p) = γ(t1), γ unique solution such that γ(t0) = p.

It is obvious that Φt1 ,t2 ◦ Φt0,t1 = Φt0,t2 (flowing along a solution from time t0
to time t1, and then from time t1 to time t2, amounts to following the solution
between times t0 and t2!), and that Φt0 ,t0 = Id. As a consequence, each map Φt0 ,t1

is invertible and (Φt0 ,t1)
−1 = Φt1 ,t0. (Moreover, since we always suppose our vector

fields continuously differentiable, one can prove that these maps are continuously
differentiable; this is a result on the regularity of the solutions with respect to
initial conditions.)

Assume now that the vector field is autonomous, i.e. that f : Ω → RN does not
depend on time. Formula (20) in the appendix then shows that, for any constant
a ∈ R, the time-shift t 7→ a + t applied to a solution γ produces a parametrised

14



curve t 7→ Γ(t) = γ(a+t) which is also a solution: Γ′(t) = γ′(a+t) = f(γ(a+t)) =
f(Γ(t)). If γ was the solution starting at p0 at time t0 + a, then Γ is the solution
starting at the same point p0 a moment before (if a > 0), at time t0. It follows that
Φt0,t1 = Φa+t0 ,a+t1 (travelling between times t0 and t1 or doing it a moment later,
between times a + t0 and a + t1, produces the same result; here, we use crucially
the autonomous character of the vector field: the law of evolution of the system
does not depend on the time at which you look at it).

Equivalently, we can say that the family of flow maps of an autonomous vector
field can be written as a one-parameter family of maps: if we set12

Φt = Φ0,t : Ω → Ω, t ∈ R

(i.e. we consider all initial conditions at time 0), we recover all the flow maps by
Φt0,t1 = Φt1−t0 . We call Φt the time-t map; this yields a family of invertible maps,

with (Φt)
−1

= Φ−t, which satisfies the so-called one-parameter group property

Φ0 = Id, Φs ◦ Φt = Φs+t, s, t ∈ R. (11)

Thus, the solution with initial condition p0 at time t0 is t 7→ γ(t) = Φt0,t(p0)
in the non-autonomous case, and it can be written t 7→ γ(t) = Φt−t0(p0) in the
autonomous case.

Note: Given any family (ϕt) of maps Ω → Ω satisfying the one-parameter group
property, we can define an autonomous vector field f by the formula

f(p) =
d

dt

(
ϕt(p)

)

|t=0
∈ R

N , p ∈ Ω. (12)

We then observe that, for any t0, the velocity vector
d

dt

(
ϕt(p)

)

|t=t0
can be written

d

ds

(
ϕs+t0(p)

)

|s=0
by formula (20) in the appendix, or

d

ds

(
ϕs(ϕt0(p))

)

|s=0
by (11),

and thus equals f(ϕt0(p)) (by definition of f). This exactly means that ϕt is
the time-t map of f . The vector field f is sometimes called “the infinitesimal
generator” of ϕt.

3.2 A solution is, by definition, a parametrised curve t 7→ γ(t). Its range
{γ(t), t ∈ R}, which is a subset of the phase space, is often called an orbit (or a
trajectory) of the vector field (i.e. we forget time-parametrisation when thinking
about the orbit instead of the solution). Observe that, in the autonomous case,
the trajectories of the system do not cross in the phase space Ω: if two solutions
pass through the same point, they necessarily define the same curve, maybe with
a time-shift. Indeed, if γ1 and γ2 are solutions with γ1(t1) = γ2(t2) = p∗, then
γ1(t) = Φt−t1(p∗) and γ2(t) = Φt−t2(p∗) for all times.13 We thus have a “foliation”
of the phase space by solution curves.

12The notation Φt is reminiscent of the notation for the iterates of a discrete dynamical system,
but here t is a real number, not necessarily an integer number!

13Consequently, in order that a solution γ be T -periodic, i.e. γ(t + T ) = γ(t) for all t, it is
sufficient that γ(t + T ) = γ(t) for a particular value of t, for instance for t = 0.
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This is not true in the non-autonomous case. But, according to the unicity
statement in the Cauchy-Lipshitz theorem, we recover an analogous property when
taking into account the time: if two solutions pass through the same point at the
same time, they necessarily coincide for all times.

There is an abstract way of reconciling both cases: one can associate with
any non-autonomous vector field (8)–(9) on Ω an autonomous vector field on the
extended phase space Ω̃ = Ω×R. The idea is to replace t in the right-hand side
of (8) by an extra variable xN+1 subject to evolution law dxN+1

dt
= 1 (which will force

it to coincide with time, up to a constant shift). We thus define f̃ : Ω̃ → RN+1 by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dx1

dt
= f1(x1, x2, . . . , xN , xN+1)

...

dxN

dt
= fN(x1, x2, . . . , xN , xN+1)

dxN+1

dt
= 1,

and we let the reader check that the corresponding autonomous flow satisfies
Φ̃t2−t1(p, t1) = (Φt1,t2(p), t2) for all (p, t1) ∈ Ω̃. Thus,

any non-autonomous vector field on Ω ⊂ RN is equivalent to an au-
tonomous vector field on Ω̃ = Ω × R with one more dimension.

3.3 Similarly, any differential equation of order higher than 1 can be brought
into the form of an autonomous system of differential equations of order 1 but of
large enough dimension. For instance, laws of physics often correspond to second-
order differential equations for one or several variables (“degrees of freedom”),
and experience indeed tells us that the position of a mechanical system at a given
instant is not sufficient to determine its motion, we need to specify the velocity at
the same instant. Here are two classical examples.

The equation for the pendulum, which is discussed at the beginning of [Ch]
(see the numerous figures therein), can be written

m`
d2x

dt2
= −mg sin x,

where the position of the pendulum is determined by the angle x counted coun-
terclockwise from the lower position, m is the mass of the pendulum, ` the length
of the string, and g the gravitational constant at Earth’s surface. Introducing the
angular velocity v = dx

dt
, we get the system

∣
∣
∣
∣
∣
∣
∣

dx

dt
= v

dv

dt
= −

g

`
sin x.

(13)
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The phase space is thus Ω = R × R, or rather S1 × R, where S1 = R/2πZ is the
circle with angular coordinate x defined modulo 2π. We shall return to this simple
model later.

Another famous example is the so-called three-body problem. Consider
three masses m1, m2, m3 with positions x(1), x(2), x(3) in R3 (which amounts to 9

real variables x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(3)
1 , x

(3)
2 , x

(3)
3 ), subject to Newton’s law

of gravitation only: we get 9 second-order differential equations, which can be
written as three equations in R3:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m1
d2x(1)

dt2
=Gm1m2

x(2) − x(1)

‖x(2) − x(1)‖3
+Gm1m3

x(3) − x(1)

‖x(3) − x(1)‖3

m2
d2x(2)

dt2
=Gm2m3

x(3) − x(2)

‖x(3) − x(2)‖3
+Gm2m1

x(1) − x(2)

‖x(1) − x(2)‖3

m3
d2x(3)

dt2
=Gm3m1

x(1) − x(3)

‖x(1) − x(3)‖3
+Gm3m2

x(2) − x(3)

‖x(2) − x(3)‖3
.

To obtain a system of first-order differential equations, we need to introduce 9

more variables, namely the components of the velocities v(i) =
dx(i)

dt
. We get an

autonomous vector field in dimension 18, which splits into six R3-components:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dx(1)

dt
= v(1)

dv(1)

dt
= Gm2

x(2) − x(1)

‖x(2) − x(1)‖3
+Gm3

x(3) − x(1)

‖x(3) − x(1)‖3

dx(2)

dt
= v(2)

dv(2)

dt
= . . .

...

Here the phase space is
(
R3 × R3 × R3 \ ∆

)
× R3 × R3 × R3, where

∆ = { (x(1), x(2), x(3)) | x(1) = x(2) or x(2) = x(3) or x(3) = x(2) }

is the “collision set”. This system admits some first integrals which help to re-
duce the dimension (among which the three components of the total “impulsion”
m1v

(1) +m2v
(2) +m3v

(3) and the total “energy” defined in § 3.5), but its behaviour
is far from being well understood (with only two bodies, on the contrary, all the
solutions can be described satisfactorily—this is the so-called Kepler problem).

Keep in mind that one can always work with an autonomous vector field, pro-
vided the phase space is suitably defined, and that the time-t maps Φt are then
sufficient to describe all the solutions, each point in the phase space determining
uniquely a solution which goes through it at time 0.
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3.4 As in the case of discrete dynamical systems, some systems are simpler than
the others regardless of the dimension: we say that we have a linear system
of differential equations with constant coefficients when the vector field f
is autonomous and defined through a constant matrix A = [ai,j]1≤i,j≤N by the
formula

f : x ∈ R
N 7→ A · x ∈ R

N . (14)

The corresponding system of differential equations has the same form as in (10),
but this time the coefficients ai,j are constant, i.e. we have an autonomous linear
system. The salient feature of linear systems, autonomous or not, is that the
flow maps Φt0 ,t1 are linear maps from RN into RN (as is easily checked by using
the unicity statement in the Cauchy-Lipschitz theorem and the characterisation
of linear maps as those which send a linear combination of vectors to the linear
combination of their images with the same coefficients). In the autonomous linear
case, we have moreover the formula14

Φt = exp(tA),

where exp( . ) denotes matrix exponentiation:

exp(B) · x = x+B · x +
1

2!
B2 · x +

1

3!
B3 · x + · · ·

for any matrix B and vector x.
For an autonomous linear system, the phenomenology is similar to what was

alluded to in §§ 1.5–1.7, the most important thing being the eigenvalues λ1, . . . , λN

of the matrix A, which yield eigenvalues etλ1 , . . . , etλN for the linear map Φt. If an
eigenvalue λi is negative, it is associated with contraction along the corresponding
directions: there exists nonzero vectors x such that A · x = λi x, which yields
Φt(x) = etλix −−−−→

t→+∞
0. Similarly, a positive eigenvalue λi is associated with

dilatation. More generally, for complex eigenvalues, what matters if the sign of
the real part: the contraction or dilatation may be combined with rotation if the
imaginary part is nonzero.

Purely imaginary eigenvalues are associated with oscillatory behaviour. We
can illustrate this with the small oscillations of the pendulum around its lower
equilibrium point. Consider the case where the angle x0 is close to 0 and we are
given an initial velocity v0 which is not too large. Since sin x ∼ x for small |x|, we
can model this by the linear system

∣
∣
∣
∣
∣
∣
∣

dx

dt
= v

dv

dt
= −

g

`
x

(15)

instead of the nonlinear system (13). The corresponding matrix is A =
(

0 1
− g

`
0

)

.

Standard linear algebra shows that exp(tA) =
(

cos(ωt) ω−1 sin(ωt)
−ω sin(ωt) cos(ωt)

)

with ω =
√

g/`

14Beware that no such formula exists for non-autonomous linear systems, which can be much
harder to study than the autonomous ones.
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(the eigenvalues of A are iω and −iω, those of exp(tA) are eiωt and e−i ωt), and
that the solutions travel along ellipses. All the solutions are periodic with the same
period T = 2π

ω
, the projection onto the x-axis oscillating periodically between the

two positions corresponding to the vanishing of v.
The passage from system (13) to (15) is called linearisation, because it consists

in replacing the components of the right-hand side by a linear approximation.
However, we cannot expect that this approximation make sense in the whole phase
space. For instance, the origin of R2 is the only equilibrium point of the linear
system, whereas the nonlinear system has another one, namely the point (π, 0)
which corresponds to the upper equilibrium position of the pendulum.

Before proceeding with a more complete description of the solutions of the
pendulum (13), let us end this paragraph with a simple example showing how
“non-homogeneous” linear equations may appear in the context of autonomous
vector fields. If we consider the system in R3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dx

dt
= −x

dy

dt
= −y + x2

dz

dt
= z + x2

(16)

and try to compute the solution γ(t) = (x(t), y(t), z(t)) with a given initial condi-
tion (x0, y0, z0) at time 0, the first equation immediately yields x(t) = x0 e−t. We
are thus left with two independent problems

dy

dt
= −y + x2

0 e−2t, y(0) = y0

and
dz

dt
= z + x2

0 e−2t, z(0) = z0.

One can then easily check that y(t) = y0 e−t + x2
0(e

−t − e−2t) and z(t) = z0 et +
x2
0

3
(et − e−2t) (use for instance the auxiliary unknown function u(t) = z(t) e−t to

compute z(t)), this is one of the rare cases of an explicit nonlinear time-t map:

Φt(x, y, z) =

(

x e−t, y e−t + x2(e−t − e−2t), z et +
x2

3
(et − e−2t)

)

.

3.5 Let us return to the pendulum described by system (13) and try to understand
its phase portrait, i.e. the foliation of the phase space by the orbits. Similarly to
what happened in the example discussed in § 2.3, there is a first integral, the level
sets of which are the orbits, except that this time there will be a singular level set.

This first integral of the pendulum is the function

H : (x, v) ∈ S
1 × R 7→ H(x, v) =

1

2
v2 +

g

`
(1 − cos x) =

1

2
v2 +

2g

`
sin2(x/2).
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Figure 4: Phase portrait of the pendulum.

Indeed, you can check that v
∂H

∂x
(x, v) −

g

`
(sin x)

∂H

∂v
(x, v) = 0. This function is,

up to a multiplicative constant, the total energy, sum of a kinetic part and a
potential. The level sets of the energy function H are represented on figure 4.

The level {H = 0 } consists of only one point, the equilibrium point (0, 0)
which corresponds to the lower position of the pendulum with zero velocity. For
0 < c < 2g

`
, the level {H = c } is a closed curve surrounding the origin, which

is well approached by the ellipsis { 1
2
v2 + g

2`
x2 = c } for small c: this is the linear

approximation for the small oscillations; but when the oscillations have larger
amplitude, the period of the motion gets larger (contrarily to the linearised system,
in which all the solutions had the same period). For c > 2g

`
, the velocity v never

vanishes along the level curve {H = c }, this corresponds to the periodic motions in
which the pendulum periodically makes a complete clockwise or anti-clockwise turn
(the angular coordinate x moves always in the same direction without stopping,
but we view this as a periodic evolution in S1 = R/2πZ). When c increases, the
period of these revolutions gets smaller because the speed |v| is larger on average.

The value c0 = 2g

`
corresponds to a limit case, which separates oscillation

motions from revolution motions. Using sin2 x = 1 − cos2 x, we can write the
corresponding level set as

{H = c0 } = { (x, v) | 1
2
v2 − 2g

`
cos2(x/2) = 0 },

which is the union of two curves { (x, v) ∈ ]−π, π[ × R | v = 2
√

g

`
cos(x/2) } and

{ (x, v) ∈ ]−π, π[ × R | v = −2
√

g

`
cos(x/2) } called “separatrices”.

This singular level set consists of 3 orbits: the equilibrium point (π, 0) (iden-
tified with (−π, 0)), an orbit Γ+ = { (x, v) ∈ ]−π, π[ × R | v = 2

√
g

`
cos(x/2) },

which is for instance the orbit followed when the pendulum starts at the lower
position with the precise velocity v0 = 2

√
g

`
which will make it reach the upper

position in infinite time, and an orbit Γ− symmetric of Γ+. Apart from the equi-
librium points, these are the only non-periodic solutions;15 they are positively and

15You can also consider them as periodic with period T = +∞, for the period of the solution
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negatively asymptotic to the “unstable” equilibrium (π, 0).

The three-body problem too admits as first integral the total energyH = K+V ,
sum of the kinetic energy

K =
1

2
m1‖v

(1)‖2 +
1

2
m2‖v

(2)‖2 +
1

2
m3‖v

(3)‖2

and of the potential

V = −
Gm1m2

‖x(1) − x(2)‖
−

Gm2m3

‖x(2) − x(3)‖
−

Gm3m1

‖x(3) − x(1)‖
.

Other first integrals are known, but not enough to understand fully the orbits of
this system!

3.6 Not all the systems admit a first integral. For instance, one can transform
the pendulum equation into

m`
d2x

dt2
= −mg sin x− ρ

dx

dt

with ρ > 0, in order to model friction as a damping force proportional to velocity.
We let the reader write the corresponding autonomous vector field and study its
phase portrait (see for instance [Ch], § 2, or [HW], Part 2, p. 32). Not suprisingly,
the energy function H is no longer a first integral, but it decays along the solutions
(the system “loses energy”). Apart from the two equilibrium points plow = (0, 0)
and pup = (π, 0), and an exceptional solution which tends to pup, all the solu-
tions γ(t) tend to plow. As a consequence, any first integral G must be constant,
for G(γ(0)) = G(γ(t)) −−−−→

t→+∞
G(plow).

So far, we have seen examples of solutions which are periodic or attracted by an
equilibrium point. It may happen that a periodic solution attracts all the nearby
solution; it is then called a limit cycle. The famous Van der Pol equation

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0,

which models an electrical circuit, possesses such a limit cycle.
Here is a simpler example:

∣
∣
∣
∣
∣
∣
∣

dx

dt
=y + α(1 − x2 − y2)x

dy

dt
= − x + α(1 − x2 − y2)y,

with α > 0. There is a unique equilibrium point, at the origin. For any solution
γ(t) = (x(t), y(t)) with an initial condition different from the origin, setting r(t) =
x(t)2 + y(t)2, we get r′(t) = 2α(1 − r(t))r(t). This shows that the unit circle

t 7→ Φt(p) tends to +∞ as dist(p, Γ+ ∪ Γ−) → 0.
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{ x2 + y2 = 1 } is invariant, and it is obviously a periodic orbit (along which the
angular velocity is constant), but this also shows that all the solutions γ(t) are
attracted by the unit circle, since r′(t) > 0 when r(t) < 1 and r′(t) < 0 when
r(t) > 1. This should be sufficient to help you to draw the phase portrait.

3.7 It is time to discuss more deeply the relation between vector fields and discrete
dynamical systems. We shall indicate three situations in which a vector field f ,
autonomous or not, gives rise to a map P , in such a way that iterating the map
corresponds to flowing along the solutions of f for a certain time. This will give
tools to transfer results on maps to vector fields.

a) We have already associated with an autonomous vector field f : Ω → R
N the

family of time-t maps (Φt). This is the most obvious case: for a given τ > 0, we
can set P = Φτ .

Thus, for all p ∈ Ω and n ∈ Z, P n(p) = Φnτ (p). In particular, P is invertible,
with P−1 = Φ−τ . Fixed points of Φτ are initial conditions of τ -periodic solutions
of f , according to footnote 13. More generally, a k-periodic orbit of P gives rise
to a kτ -periodic orbit of f .

In this case, the vector field and the map are defined16 in the same set Ω.

b) Let us now consider a non-autonomous vector field f : Ω × R → R
N , but with

a periodic dependence on time:

f(p, t+ T ) = f(p, t), p ∈ Ω, t ∈ R,

where T > 0 is fixed.
Beware that this does not imply that the solutions of f are T -periodic! But

there is a subtler kind of periodicity in the flow maps:

Φt0,t1 = Φt0+T,t1+T , t0, t1 ∈ R.

This is easy to check: Let p ∈ Ω, t0 ∈ R, γ(t) = Φt0,t(p), Γ(t) = Φt0+T,t(p). We
want to prove that γ(t) = Γ(t+T ) and we already have γ(t0) = p = Γ(t0 +T ). On
the other hand, according to formula (20) in the appendix, the velocity vector of
the parametrised curve t 7→ Γ(t+T ) is Γ′(t+T ) = f(Γ(t+T ), t+T ) = f(Γ(t+T ), t)
by assumption, thus this parametrised curve is the solution with initial condition p
at time t0.

As a particular case, we have

· · · = Φt0−T,t0 = Φt0,t0+T = Φt0+T,t0+2T = Φt0+2T,t0+3T = · · ·

Let us define P = Φt0 ,t0+T for a given t0. This is called the Poincaré map associ-
ated with the section { t ≡ t0 }. This map is invertible, with P−1 = Φt0+2T,t0+T =
Φt0+T,t0 = Φt0 ,t0−T . . . For any point p and integer n, we have

P n(p) = Φt0+(n−1)T,t0+nT ◦ Φt0+(n−2)T,t0+(n−1)T ◦ · · · ◦ Φt0 ,t0+T (p) = Φt0,t0+nT (p).

16Observe that the construction only requires that all the initial conditions in Ω give rise to a
forward solution of f defined for all positive times: this is sufficient to have P n(p) = Φnτ (p) for
all n ≥ 0, even if the vector field is not complete.
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Figure 5: The Poincaré map P for a periodic vector field (left) and for a transversal
section of an autonomous vector field (right).

Hence, iterating P makes sense and corresponds to looking at the solution γ(t) =
Φt0,t(p) at times t = t0 + nT , as with a stroboscope.

If p0 is a k-periodic point of P , the solution of f with initial condition p0 at
time t0 is kT -periodic.

Here, the extended phase space Ω×R of the vector field (in which the solutions
are pairwise disjoint curves) has one more dimension than the phase space Ω of
the Poincaré map.

Note: If moreover f(p, t) is linear in p = (x1, . . . , xN) ∈ RN (cf. (10) in § 2.5),
each map Φt0,t1 is linear, in particular the Poincaré map is a linear map and can
be analysed in the spirit of §§ 1.5–1.7 (first look at the eigenvalues and try to
diagonalise. . . ), leading to the so-called Floquet theory.

c) We finally consider an autonomous vector field f : Ω → RN and a transver-
sal section Σ. This means that Σ is a (N − 1)-dimensional surface in the N -
dimensional set Ω, with the property that at each point p of Σ the vector field f(p)
is not tangent to Σ.

It is sometimes possible to define the Poincaré return map associated with
the section Σ: the idea is that when an initial condition p0 is chosen on Σ, the corre-
sponding solution curve γ(t) = Φt(p0) will necessarily leave Σ (by the transversality
assumption), but it may return to Σ after an excursion in Ω \ Σ; the correspon-
dence between p0 and the first return point p1 = γ(τ) ∈ Σ (for a certain τ > 0
which depends on p0) then defines a map from Σ to Σ.

More formally, for a point p0 ∈ Σ, we define (whenever possible) P (p0) =
Φτ(p0)(p0) where the return time τ(p0) > 0 is characterised by Φτ(p0)(p0) ∈ Σ and
Φτ (p0) /∈ Σ for 0 < τ < τ(p0).

Iterating the map P still corresponds to flowing along a solution of f , extract-
ing from the solution a discrete sequence of points, but the peculiarity of this
construction is that the times at which the solution passes through these points
are not necessarily equally spaced. A fixed point (or a periodic point) p∗ of P
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corresponds to a solution γ∗ which is periodic, but the period is not determined a
priori, it is imposed by the geometry itself.

One can prove that conversely, if t 7→ γ∗(t) is a periodic solution of f , the above
construction is possible in any small enough section Σ which is transversal to γ∗
at a point of γ∗.

The interest of the return map is that its phase space has one less dimension
than the phase space of the autonomous vector field f .

The above case b), involving a non-autonomous vector field f depending peri-
odically on time, was a particular case of this construction: if we take Ω× (R/TZ)
as extended phase, i.e. we consider the last variable xN+1 as defined modulo T , we
get an autonomous vector field f̃ for which { xN+1 ≡ t0 } is a transversal section
with a well-defined return map (because dxN+1

dt
= 1).

4 The stable manifold theorem

4.1 A standard approach to many systems which look difficult to analyse is to view
them as perturbations of simpler systems: sometimes, by neglecting a few terms
in the law of evolution, we get a system for which the phase portrait is known,
or at least some solutions are well understood, and one tries then to justify the
approximation, i.e. to prove the existence of features in the original complicated
system which are similar, maybe with a slight deformation, to the known features
of the simpler system.

The first instance of this approach is linearisation: when you have an equilib-
rium point for a non-linear system, you can try to approach the nearby solutions
by the solutions of a linear system, as we already did in § 3.4 for the differential
equation of the pendulum.

4.2 In the case of a discrete dynamical system F with a fixed point p∗ (we assume
that F is a differentiable map from Ω to Ω, where Ω is an open subset of R

d), the
linearised system is defined as the differential DF (p∗), viewed as a linear map
from Rd to Rd to be iterated. In view of formula (18) of the appendix, this indeed
corresponds to a linear approximation when performing the change of coordinates
x = p∗ +X:

F (p∗ +Xn) ≈ p∗ +Xn+1, Xn+1 = DF (p∗) ·Xn

(remember that F (p∗) = p∗).

Note: Observe that D(F n)(p∗) =
(
DF (p∗)

)n
, i.e. the linearisation of the nth

iterate is the nth iterate of the linearisation. This is a consequence of the chain rule
(§ 5.6 in the appendix); more generally, if {pn = F n(p0)} is any orbit, D(F n)(p0) =
DF (pn−1) ◦ DF (pn−2) ◦ · · · ◦ DF (p0).

We say that A = DF (p∗) is a hyperbolic matrix, or that p∗ is a hyperbolic
fixed point of F , when all the (possibly complex) eigenvalues of this matrix have
modulus 6= 1.
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A standard result of linear algebra then states that each vector X of Rd can
be written, in a unique fashion, as the sum of two vectors X (s) and X (u) such that

‖A ·X (s)‖ ≤ κ‖X (s)‖, ‖A−1 ·X(u)‖ ≤ κ‖X (u)‖,

where κ is a fixed constant which satisfies 0 < κ < 1 and which depends only on
the matrix DF (p∗) (possibly with a modification of the definition of the norm ‖ . ‖,
but this is innocuous).

We have already seen such a situation in § 1.6, where the matrix A for that
example was proved to have eigenvalues 4 and 1

2
with the help of a linear change

of coordinates. Indeed, in the diagonalising coordinates, the decomposition of an
arbitrary vector X was simply
(
X1

X2

)

=

(
0
X2

)

+

(
X1

0

)

, D ·

(
0
X2

)

=
1

2

(
0
X2

)

, D−1 ·

(
X1

0

)

=
1

4

(
X1

0

)

.

In the original coordinates (we were then using the letter x), this corresponded to
the decomposition of R2 into the direct sum E(s) ⊕E(u) of two invariant lines, the
maps x 7→ x(s) and x 7→ x(u) being the associated projectors.

For a general hyperbolic matrix too, we have a decomposition R
d = E(s)⊕E(u)

into two invariant vector subspaces, called the “stable” and “unstable” subspaces
(maybe of higher dimensions than a line; for instance, in the case of the matrix A
of § 1.7, one finds that E(s) is the 2-dimensional vector subspace spanned by the
first two vectors of the standard basis of R4, and that E(u) is the 2-dimensional
vector subspace spanned by the last two vectors).

The stable subspace consists of the vectors X such that X = X (s). For such
vectors, we have by induction

‖An ·X‖ ≤ κn‖X‖ −−−−→
n→+∞

0.

Similarly, for vectors in the unstable subspace, X = X (u) and

‖A−n ·X‖ ≤ κn‖X‖ −−−−→
n→+∞

0.

4.3 Among the orbits of a hyperbolic matrix A, we thus have two remarkable
families:
– If the initial condition X0 belongs to E(s), all past and future iterates stay in E(s)

(because this subspace is invariant), and the future iterates Xn converge to 0.
– If the initial condition X0 belongs to E(u), all past and future iterates stay in E(s),
and the past iterates X−n converge to 0.

It turns out that a nonlinear version of this phenomenon takes place for any
discrete dynamical system with a hyperbolic fixed point—this is the content of the
stable manifold theorem:

If F : Ω → Ω has a hyperbolic fixed point p∗, the formulas

W(s) = { p ∈ Ω | F n(p) −−−−→
n→+∞

p∗ }, W (u) = { p ∈ Ω | F−n(p) −−−−→
n→+∞

p∗ }
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define two invariant subsets, which are submanifolds of Ω containing p∗, respec-
tively tangent to E(s) and E(u) at p∗.

The fact that W (s) is a submanifold tangent to E(s) at p∗ simply means the fol-
lowing:

We can use (X (s), X(u)) ∈ E(s) × E(u) as “coordinates” representing the point
p = p∗ + X(s) + X(u), where X (s) is a vector which requires d(s) real numbers to
be determined if d(s) is the dimension of E(s), and X (u) is a vector of dimension
d(u) = dimE(u). In these coordinates, the fixed point p∗ corresponds to (0, 0), the
linear approximation of F reads (X (s), X(u)) 7→ (A·X (s), A·X(u)) with A = DF (p∗),
and E(s) corresponds to {X (u) = 0 }.

Well, locally, in these coordinates, W (s) corresponds to {X (u) = ϕ(X (s)) },
where ϕ is a differentiable map E(s) → E(u) with Dϕ(0) = 0. Therefore, we can
think of this set as of a d(s)-dimensional surface, the linear approximation of which
is {X (u) = 0 } = E(s).

Similarly, W (u) locally corresponds to {X (s) = ψ(X (u)) }, where ψ is a differ-
entiable map E(u) → E(s) with Dψ(0) = 0, therefore the linear approximation of
this d(u)-dimensional surface is {X (s) = 0 } = E(u).

The sets W (s) and W (u) are called the stable and unstable manifolds of p∗
for F ; they are sometimes denoted W (s)(p∗, F ) and W (u)(p∗, F ). The reader is
referred to any dynamical system textbook for the proof of the aforementioned
theorem.

4.4 Here is an example in R3: the map

F : (x, y, z) 7→ (x′, y′, z′) = (1
2
x, 1

2
y + 1

4
x2, 2z + 7

12
x2)

clearly has a hyperbolic fixed point at the origin, with DF (0)·X = ( 1
2
X1,

1
2
X2, 2X3),

with eigenvalues 1
2

and 2, and with a 2-dimensional subspace E(s) = { z = 0 } and
a 1-dimensional subspace E(u) = { x = y = 0 }.

One can see that E(u) is invariant not only by DF (0), but also by F itself,
therefore W (u) = E(u); on this set, the dynamics of F−1 is simply (0, 0, z) 7→
(0, 0, 1

2
z), which yields convergence of the backward orbits to the origin, as should

be.
For this particular map, the stable manifold can be computed exactly:

W(s) = { (x, y, z) ∈ R
3 | z +

x2

3
= 0 },

i.e. ϕ(X1, X2) = −1
3
X2

1 in the above notations. Indeed, z = −x2/3 implies that
z′ = −2

3
x2 + 7

12
x2 = − 1

12
x2, thus z′ = −x′2/3 (since x′ = x/2): this establishes the

invariance of the set { z = −x2/3 }. The forward orbits can be computed:

F n(x, y,−1
3
x2) =

(
1
2nx,

1
2n y +

(
1
2n − 1

4n

)
x2,−1

3

(
1
2nx

)2
)

,

and they converge to the origin, as should be.
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However, this example is quite exceptional. Even in dimension d = 2, the
situation can be much more intricate. For instance the standard map F , which was
defined by (1) at the beginning, has a hyperbolic fixed point at (0, 0) ∈ S1×R. The
reader may wonder where the stable and unstable manifolds are on figure 1. . .Well,
they are on the picture, but these curves are so complicated that they seem to
create a chaotic region which contains the fixed point. This is related to the fact
that we have not been very precise when using the word “locally” to explain the
stable manifold theorem: in fact, it was only a piece of W (s), called the local
stable manifold W

(s)
loc which could be repesented as a nice d(s)-dimensional surface

{X (u) = ϕ(X (s)) }, and this piece is forward-invariant: p ∈ W
(s)
loc implies F (p) ∈

W
(s)
loc ; from this, the whole stable manifold can be recovered by adding the points

of F−1(W
(s)
loc ), i.e. the points of which the first iterate is in W

(s)
loc , and also the

points of F−2(W
(s)
loc ), etc. Proceeding this way, at each step the set of points we

add is a nice d(s)-dimensional manifold (because F−1 is a differentiable invertible
map), but globally, the set is not so regular: in the case of the standard map, it
turns out that after a few steps of this process the curve you must add is a very
long and sinuous one.

We shall not discuss further this situation, which is sometimes called homo-
clinic tangle and which conceals fascinating features—see e.g. § 4 of [Ch].

4.5 Perhaps the reader wonders how the orbits were computed in the first example
of the previous paragraph. In fact, this is a particular case of a formula that we
have already obtained at the end of § 3.4! The map F of the example was nothing
but the time-τ map of the autonomous vector field (16) with τ = log 2, so we know
how to iterate, even for a non-integer number of times.

There is a version of the stable manifold theorem for autonomous vector fields
which can be applied directly to (16).

Consider the system
dx

dt
= f(x), with an autonomous vector field f : Ω → RN ,

and assume that p∗ ∈ Ω is an equilibrium point. As usual, we denote by Φt the
time-t map. We define the linearised vector field as the autonomous linear

vector field
dX

dt
= A ·X in RN , with A = Df(p∗). The reader can check that this

definition is consistent with what we did in § 3.4, when linearising the pendulum
(passage from system (13) to (15)).

One can prove that DΦt(p∗) is the time-t map of the vector field A, i.e. the
linearisation of the flow map is the flow map of the linearised system.17 Thus

DΦτ (p∗) = exp(τA).

17It is easy to check that the family of linear maps
(
DΦt(p∗)

)
satisfies the one-parameter group

property by applying the chain rule to differentiate the relation Φs ◦ Φt = Φs+t. One may then
resort to formula (12) to compute the infinitesimal generator, which is easily seen to be a linear
vector field. The key is that the components of the differentials DΦt(p∗) and Df(p∗) correspond

to the action of the operators
∂

∂xj

, and these operators commute with the operator
∂

∂t
used for

the time-derivative (cf. the end of § 5.3 and footnote 20 in the appendix).
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We say that p∗ is a hyperbolic equilibrium point for f if the matrix A has
no eigenvalues on the imaginary axis. This is equivalent to the hyberbolicity of
any of the matrices exp(τA), τ 6= 0, i.e. a hyperbolic equilibrium point of a vector
field is a hyperbolic fixed point of any of its time-τ maps (except Φ0 which is the
identity map). Moreover, the stable subspace E(s) is the same for all the linear
maps exp(τA), τ > 0, and similarly the unstable subspace E(u) is the same for all
of them (both spaces are exchanged for τ < 0).

The stable manifold theorem for such a vector field f asserts the existence of
submanifolds W (s) and W (u) containing p∗, tangent to E(s) and E(u) at p∗, which
are the common stable and unstable manifolds of all the maps Φτ , τ > 0. These
sets are invariant by the flow of f , and

W(s) = { p ∈ Ω | Φt(p) −−−−→
t→+∞

p∗ }, W (u) = { p ∈ Ω | Φt(p) −−−−→
t→−∞

p∗ }.

In the example (16), we had obtained the general solution

γ(t) = Φt(x, y, z) =
(

x e−t, y e−t + x2(e−t − e−2t), −x2

3
e−2t + (z + x2

3
)et

)

,

with arbitrary initial condition (x, y, z), which shows that imposing z + x2

3
= 0 is

the only way of preventing the solution from escaping to infinity.
Another easy example is the equilibrium point p∗ = (π, 0) of the pendulum (13):

the curve called Γ+ in § 3.5 is a piece of the stable manifold, whereas Γ− is a piece
of its unstable manifold. Figure 4 should make it clear what the complete stable
and unstable manifolds are: if we consider this system as a vector field in R2, the
stable manifold of p∗ is { (x, v) ∈ ]−π, 3π[ × R | v = 2

√
g

`
cos(x/2) } for instance;

observe that we must then consider p′∗ = (−π, 0) as another hyperbolic fixed point,
the unstable manifold of which is { (x, v) ∈ ]−3π, π[ × R | v = 2

√
g

`
cos(x/2) }.

In other words, Γ+ is both a piece of W (s)(p∗) and of W (u)(p′∗), this is called a
heteroclinic connection.

When the same picture is viewed in S
1 × R, the fixed points p∗ and p′∗ are

identified, and the manifolds W (s)(p∗) and W (u)(p∗) both coincide with Γ+∪{p∗}∪
Γ−. We then say that Γ+ and Γ− are homoclinic connections.

The coincidence of both manifolds must be regarded as a consequence of the
low dimension. In dimension N ≥ 3, even when there exists a first integral, one
can have a hyperbolic equilibrium point of a vector field for which the stable and
unstable manifolds do not coincide but there exists a homoclinic connection, i.e.
an orbit contained in the intersection of these manifolds. The situation can then
be much more complicated than in the case of the pendulum (in fact, for a vector
field with N = 3 without non-trivial first integrals, it can be as complicated as in
the case of a discrete system with d = 2 like the standard map).

4.6 Let us end by another interesting application of the stable manifold theorem to
autonomous vector fields: we now suppose that the vector field f : Ω → R

N admits
a periodic orbit γ∗. Consider a point p∗ on the periodic orbit and a hypersurface Σ
transversal to γ∗ at p∗, and let PΣ be the corresponding Poincaré return map.
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For this map, p∗ is a fixed point, which may be hyperbolic. It turns out that the
hyperbolicity of the fixed point does not depend on the choice of p∗ and Σ (because,
if we have two choices (p∗,Σ) and (p′∗,Σ

′), the maps PΣ and PΣ′ are related—the
proper word is “conjugate”—by the flow map between Σ and Σ′). We can thus
declare that γ∗ is hyperbolic periodic orbit of f if p∗ is a hyperbolic fixed point
of PΣ for a choice of (p∗,Σ).

In this situation, we can apply the stable manifold theorem to PΣ and we get
submanifolds W (s)(p∗, PΣ) and W (u)(p∗, PΣ) of Σ, of dimensions d(s) and d(u), with
d(s) + d(u) = dim Σ = N − 1. From this, one can deduce that

W(s)(γ∗) = { p ∈ Ω | dist(Φt(p), γ∗) −−−−→
t→+∞

0 },

W(u)(γ∗) = { p ∈ Ω | dist(Φt(p), γ∗) −−−−→
t→−∞

0 }

are submanifolds of dimensions d(s) + 1 and d(u) + 1 containing γ∗.
Again, even with relatively small dimension, things can be complicated. Con-

sider for instance a periodically forced pendulum

∣
∣
∣
∣
∣
∣
∣

dx

dt
=v

dv

dt
= −

g

`
sin x+ εa(t, x),

where ε > 0 is a small parameter, the function a is 2π-periodic in both its argu-
ments and we suppose a(t, π) = 0 for all t. We can view this as an autonomous
vector field in S1 × R × S1 (see the very end of § 3.7), which possesses a hy-
perbolic 2π-periodic solution γ∗ : t 7→ (π, 0, t). We can then play the previous
game with Σ = { t ≡ 0 } (for instance). The upshot is that the periodic orbit
has 2-dimensional stable and unstable manifolds in the 3-dimensional phase space,
which intersect Σ along the 1-dimensional stable and unstable manifolds of (π, 0, 0)
for PΣ; the possible homoclinic connections are illustrated in figure 43 of [Ch], § 4.
The 2-dimensional phase portrait of PΣ may very well look as chaotic as the one
of the standard map (figure 1).
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5 Appendix: a brief reminder on calculus

The basic object here is a real-valued function defined on an open subset of RN

and its regularity properties.

5.1 Let Ω be a subset of RN , where N ≥ 1 is an integer. The norm of a vector
U = (U1, . . . , UN) of RN is defined to be the non-negative real number

‖U‖ =
√

U2
1 + · · ·+ U2

N .

For any two points p = (x1, . . . , xN ) and p′ = (x′1, . . . , x
′
N) in Ω, we denote by

−→
pp′

the vector (x′1 − x1, . . . , x
′
N − xN) ∈ RN and we set dist(p, p′) = ‖

−→
pp′‖. Conversely,

if p ∈ Ω and U ∈ RN , we define the point p+ U ∈ RN as the point of coordinates

(x1 + U1, . . . , xN + UN ), i.e. the unique point p′ such that
−→
pp′ = U , but this

point p+ U does not necessarily belong to Ω.
We say that a point p is interior to Ω if all the points of the form p+U with

‖U‖ small enough belong to Ω, i.e. if there exists ρ > 0 (a number which depends
on p and which may be very small) such that p+ U ∈ Ω as soon as ‖U‖ < ρ.

Consider for instance

B = { p ∈ R
N | dist(0, p) ≤ 1 }

(the closed unit ball centred at the origin). The point p0 = ( 9
10
, 0, . . . , 0) belongs

to B and is interior to B, since any point of the form p0 +U with ‖U‖ < 1
10

belongs
to B. But a point like p1 = (1, 0, . . . , 0), which is also in B, is not interior to B,
since for any ρ > 0 (even very small) there is at least a vector U with ‖U‖ < ρ and
p1 + U /∈ B (consider for instance U = (ρ/2, 0, . . . , 0)). It is easy to see that the
points of B which are not interior to B are precisely those p such that dist(0, p) = 1
(they are called the boundary points).

The set Ω is said to be an open subset of RN if all the points of Ω are interior
to Ω. Thus the closed ball B is not open18, whereas the set { p = (x1, . . . , xN) |
dist(0, p) < 1 } is open.

5.2 The hypothesis that Ω is open is useful because it means that, for any point
p ∈ Ω, small enough variations p + U of the point also belong to Ω. Thus, if a
function f : Ω → R is given, we can evaluate the functions f at these points too
and study the differences f(p+ U) − f(p) for small enough ‖U‖.

A function f : Ω → R is said to be continuous at a point p ∈ Ω if f(p +
U) − f(p) tends to 0 as ‖U‖ → 0. This means that for any ε > 0, small though it
may be, one can guarantee |f(p+U)− f(p)| < ε simply by taking ‖U‖ sufficiently
small.

The function is said to be differentiable at p if there exists a linear map
Ap : RN → R such that f(p + U) − f(p) = Ap · U + bp(U), where the “error

18But if you define a closed subset of RN as the complement of an open subset, you will find
that the closed ball B is. . . closed!
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term” bp(U) can be neglected in front of U , i.e. bp(U) = ‖U‖εp(U) where εp(U)
tends to 0 as ‖U‖ → 0 (typically, the error term can be of the order of ‖U‖2).

The general form of a linear map A : RN → R is A · U = α1U1 + · · · + αNUN

with real coefficients α1, . . . , αN ; in the case of a differentiable function at p, these

coefficients are called the partial derivatives of f at p and are denoted
∂f

∂xj

(p).

The linear map Ap itself is called the differential of f at p and is denoted df(p).
To summarize,

f(p+ U) = f(p) + df(p) · U + ‖U‖εp(U),

df(p) · U =
∂f

∂x1
(p)U1 + · · ·+

∂f

∂xN

(p)UN , εp(U) −−−−→
‖U‖→0

0. (17)

One should remember that this formula corresponds to a linear approximation of
the variations of f around p.

Clearly, formula (17) implies that f(p + U) − f(p) tends to 0 as ‖U‖ → 0.
Hence, a function which is differentiable at a point is necessarily continuous at
this point. Here are examples with N = 1 and Ω = R.

– The function f : x 7→ x2 is differentiable at each point of R, with df(x)·U = 2xU .
(Indeed: the variation around x is (x + U)2 − x2 = 2xU + U2, thus the linear
approximation is 2xU , while the error term is quadratic in this example.)

– The function g : x 7→ |x| (absolute value) is continuous at each point of R,
differentiable at each x > 0 with dg(x) · U = U , differentiable at each x < 0 with
dg(x) · U = −U , but not differentiable at 0.

– The function h : x 7→ x
|x|

, whatever its definition at 0, is not continuous at 0 (it

is the “sign function”: h(x) = +1 if x > 0, h(x) = −1 if x < 0).

In RN , the function f1 : p = (x1, . . . , xN ) 7→ dist(0, p) =
√

x2
1 + · · ·+ x2

N is
continuous at every point, and differentiable at each point of RN \ {0}, but it is
not differentiable at the origin itself. The function f2 : (x1, . . . , xN) 7→ x2

1+· · ·+x2
N

is differentiable at every point of RN . Their differentials at a point p = (x1, . . . , xN )
are related with the scalar product:

df1(p)·U =
x1U1 + · · ·+ xNUN

√

x2
1 + · · ·+ x2

N

, df2(p)·U = 2(x1U1+· · ·+xNUN), U ∈ R
N .

The differentials in these examples can be computed quite simply by using the
tools indicated in the following (beginning with f2 and then writing (f1)

2 = f2).

5.3 We say that a function f is continuous on an open subset Ω of RN if it
is continuous at each point of Ω. We say that it is differentiable on Ω if it is
differentiable at each point of Ω.

In the last case, at each p ∈ Ω we get N real numbers
∂f

∂x1

(p), . . . ,
∂f

∂xN

(p), so
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we can define N functions19

∂f

∂x1
, . . . ,

∂f

∂xN

: Ω → R

called the partial derivatives of f . If these functions are continuous on Ω, f is said
to be continuously differentiable on Ω (or of C1 class).20

For functions of a single variable x, i.e. when N = 1 and Ω is an open subset
of R, for instance an open interval ]a, b[, there is only one possible partial derivative,

which is denoted
df

dx
instead of

∂f

∂x
and is called simply “the derivative”. The

derivative of f : ]a, b[ → R is also denoted f ′.

For example, if k ∈ N, the function f : x 7→ xk is differentiable21 on R, with

derivative
df

dx
: x 7→ k xk−1. The derivative f ′ =

df

dx
is itself differentiable, with

derivative f ′′ : x 7→ k(k − 1) xk−2, and in fact f is of C∞ class.

The exponential function exp : x 7→ ex is differentiable on R and has the
remarkable property of coinciding with its derivative: (exp)′ = exp (it is thus of C∞

class). This function exp : R → ]0,+∞[ can be defined22 as the reciprocal of the
logarithm function log : ]0,+∞[ → R, which is the unique differentiable function
on ]0,+∞[ which vanishes at the point 1 and which has derivative (log)′ : x 7→ 1/x.

For functions of N variables, the name “partial derivatives” comes from the

fact that
∂f

∂xj

can be computed as the derivative of the “partial” function xj 7→

f(x1, . . . , xj, . . . , xN ), where x1, . . . , xj−1, xj+1, . . . , xN are considered to be fixed,
while xj is the only variable,.

5.4 Linear combinations (with constant coefficients) of differentiable functions are
differentiable, with

∂

∂xj

(λf + µg) = λ
∂f

∂xj

+ µ
∂g

∂xj

for instance.

19Observe that we can also define a map df : p 7→ df(p), but it is not a real-valued function,
it rather takes its values in the space of all linear maps from RN to R.

20 It often happens that the partial derivatives ∂f
∂xj

are themselves continuously differentiable; if

so, we say that f is of C2 class, and we can associate with it N 2 second-order partial derivatives
∂

∂xk

(
∂f
∂xj

)

, which are simply denoted ∂2f
∂xk∂xj

. Classical theorems then tell us that ∂2f
∂xk∂xj

=

∂2f
∂xj∂xk

(Schwarz formula), and that formula (17) can be refined, giving rise to the Taylor formula

at second order. Functions of C3, C4, . . . class are defined similarly: the functions which are
indefinitely differentiable are said to be of C∞ class.

21If k is a negative integer, say k = −`, ` ≥ 1, by definition x−` = 1/x` and we get a
differentiable function on R\{0}, with derivative −` x−`−1. If k is a real number, not necessarily
integer, xk is still defined for x > 0 (as ek log x) and we get a differentiable function on ]0, +∞[,
with derivative k xk−1.

22The exponential function can also be defined as the sum of a series: ex = 1+x+ x2

2! + x3

3! +· · · .
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As a consequence, the derivative of a polynomial is easily computed. For
example P (x1, x2) = α0,0 + α1,0x1 + α0,1x2 + α2,0x

2
1 + α1,1x1x2 + α0,2x

2
2 implies

∂P

∂x1

(x1, x2) = α1,0 + 2α2,0x1 + α1,1x2.

The product of two differentiable functions is a differentiable function, the
partial derivatives of which are computed according to Leibniz rule:

∂

∂xj

(fg) =
∂f

∂xj

g + f
∂g

∂xj

.

5.5 We can also deal with vector-valued functions. Let M ≥ 1 be integer. Consid-
ering a function F : Ω → RM amounts to considering simultaneously M functions
F1, . . . , FM : Ω → R, which are the components of F , i.e.

F (p) =
(
F1(p), . . . , FM(p)

)
∈ R

M , p ∈ Ω ⊂ R
N .

All the previous definitions can be extended to this case. For instance F is said
to be differentiable if each component Fi is differentiable; we then group together
the partial derivatives of the components to obtain vector-valued functions

∂F

∂xj

=

(
∂F1

∂xj

, . . . ,
∂FM

∂xj

)

: Ω → R
M , j = 1, . . . , N.

Thus, for fixed j, the operator
∂

∂xj

sends a vector-valued function F : Ω → RM to

a vector-valued function
∂F

∂xj

: Ω → RM .

In this situation, it is worth grouping together the differentials of the compo-
nents at a given point p: formula (17) indeed yields M equations

Fi(p+ U) = Fi(p) + dFi(p) · U + ‖U‖εp,i(U)

which can be compactly written as

F (p+ U) = F (p) + DF (p) · U + ‖U‖εp(U), (18)

where εp(U) is now a vector-valued function of U which tends to 0 as ‖U‖ → 0,
and

DF (p) · U =
(
dF1(p) · U, . . . , dFM(p) · U

)
∈ R

M , U ∈ R
N .

We thus define a linear map DF (p) : R
N → R

M , which is called the tangent
map to F at p (some authors call it the derivative of F at p). As in § 1.5 we can
associate with it a matrix23, the elements of which are the coefficients ∂Fi

∂xj
(p).

23Be careful that the variable is now U = (U1, . . . , UN) (rather than p which is considered to
be fixed in the previous formulas). Moreover, contrarily to what happened in § 1.5, the matrix
of DF (p) is not necessarily square since we did not assume M = N .
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We emphasize that at each point p we have a linear map DF (p) from RN to RM ,
thus the function DF is a rather sophisticated object; this mixture of analysis and
linear algebra sometimes causes troubles to students.

5.6 In practice, an important formula is the so-called chain rule, which tells
us how to deal with the composition of two differentiable functions. Suppose
for instance that Ω is an open subset of RN , Ω′ is an open subset of RM , F =
(F1, . . . , FM) is a differentiable vector-valued function on Ω, and ϕ is a differentiable
real-valued function on Ω′. Suppose furthermore that F takes its values in Ω′, so
that we can consider the composed function ϕ ◦ F :

Ω
F

−−→ Ω′ ϕ
−−→ R

p −−→ F (p) −−→ ϕ ◦ F (p).

Then the function ϕ ◦ F is differentiable on Ω and

d(ϕ ◦ F )(p) = dϕ(F (p)) ◦ DF (p),

which means that

d(ϕ ◦ F )(p) · U = dϕ(F (p)) · [DF (p) · U ] , U ∈ R
N ,

or, equivalently,

∂(ϕ ◦ F )

∂xj

(p) =
∂ϕ

∂y1
(F (p))

∂F1

∂xj

(p) + · · ·+
∂ϕ

∂yM

(F (p))
∂FM

∂xj

(p)

if we call (y1, . . . , yM) the coordinates in Ω′.

At this point, we refer to textbooks for the fundamental theorem of analysis,
which is the Implicit Function Theorem.

5.7 Of particular interest for differential equations is the case when N = 1 and
M ≥ 1: a vector-valued function of a single real variable can be interpreted as a
parametrised curve in RM .

As an open subset of R on which the function is defined, we choose an open
interval I = ]a, b[, and we consider a differentiable function

γ = (γ1, . . . , γM) : I → R
M .

Instead of x1 or x, the variable in I will be denoted t. The only possible partial

derivative (since there is only one variable) is denoted
dγ

dt
(instead of

∂γ

∂t
) and is

called “the derivative” (as in the case of real-valued functions of a single variable—
cf. § 4.3); it is a vector-valued function

dγ

dt
=

(
dγ1

dt
, . . . ,

dγM

dt

)

: I → R
M .
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One also uses the notation γ ′ = (γ′1, . . . , γ
′
M) to denote the same function (or the

notation γ̇). Sometimes, one writes d
dt

(
γ(t)

)

|t=t0
instead of dγ

dt
(t0) or γ′(t0).

If we interpret the variable t as time, we may consider γ as the time-parametris-
ation of a curve, and we may speak of γ(t) as of a mobile point in RM . For that
reason γ′(t) is called the velocity vector at time t. The time-derivative of the

velocity is nothing but the acceleration γ ′′ =
d

dt

(
dγ

dt

)

(when it exists, e.g. when

γ is of C2 class). Observe that with these notations, formula (17) reads

γi(t + u) = γi(t) + γ′i(t)u+ u εt,i(u), i = 1, . . . ,M,

with εt,i(u) −−→
u→0

0, or equivalently γ ′(t) =
dγ

dt
(t) = lim

u∈R, u→0

γ(t + u) − γ(t)

u
.

An example with M = 2 is the parametrisation of a circle of radius R with
constant angular velocity ω: γ(t) = (R cos(ωt), R sin(ωt)), for which the velocity
vector γ′(t) = (−ωR sin(ωt), ωR cos(ωt)) has constant norm |ω|R.

5.8 Let us end with two useful consequences of the chain rule for a parametrised
curve γ : I → RM .

a) A differentiable function θ : J → I (where J is an open interval in R) can
be used as a change of parametrisation, i.e. we may consider the differentiable

function s 7→ Γ(s) = γ
(
θ(s)

)
. Then

d

ds

[
γi

(
θ(s)

)]

|s=s0
=

dγi

dt

(
θ(s0)

) dθ

ds
(s0) for

each i, which yields

Γ′(s0) =
d

ds

[
γ
(
θ(s)

)]

|s=s0
= θ′(s0) γ

′
(
θ(s0)

)
. (19)

A common abuse of notation in this situation consists in using the same letter γ to
denote Γ(s) and γ(t), and the same letter t for the old variable and for the change
of variable θ, which yields the formula

dγ

ds
=

dt

ds

dγ

dt

(which may be easier to remember). Here,
dt

ds
must be understood as the function

θ′ =
dθ

ds
.

As an example of application of formula (19), we have

d

ds

[
γ(λs)

]
= λ γ′(λs),

d

ds

[
γ(a+ s)

]
= γ′(a+ s). (20)

for arbitrary constants λ and a.

b) If a differentiable function g is given in R
M (with values in R)—in physics,

this is sometimes called an “observable”—, by composition we get a real-valued
function t 7→ g

(
γ(t)

)
(which may be interpreted as the result of a measurement
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which varies with time, because the point at which g is measured is a mobile point).
Then

d

dt

[
g
(
γ(t)

)]

|t=t0
= dg

(
γ(t0)

)
· γ′(t0). (21)

In the right-hand side, the linear map dg
(
γ(t0)

)
is evaluated on the vector γ ′(t0) ∈

RM , i.e.

d

dt

[
g
(
γ(t)

)]

|t=t0
=

∂g

∂x1

(
γ(t0)

)
γ′1(t0) + · · ·+

∂g

∂xM

(
γ(t0)

)
γ′M(t0).
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bilités, applications, pp. 666–762. Encyclopaedia Universalis et Albin Michel,
Paris (1998).

[DC] Sous la direction de A. Dahan Dalmedico, J.-L. Chabert, K. Chemla. Chaos
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