
Abstract

By formulating the original ideas of Helmholtz on perception, in terms of modern-day theories, one arrives
at a model of perceptual inference and learning that can explain a remarkable range of neurobiological
facts.  Using constructs from statistical physics, machine learning and probability theory the problems of
inferring the causes of sensory input and learning the causal structure of their generation can be resolved
using exactly the same principles.  Furthermore, inference and learning can proceed in a biologically
plausible fashion.  The ensuing scheme rests on Empirical Bayes and hierarchical models of how
sensory input is caused.  The use of hierarchical models enables the brain to construct prior expectations
in a dynamic and context-sensitive fashion.  This scheme provides a principled way to understand many
aspects of cortical organisation and responses.
   In terms of cortical architectures, it predicts that sensory cortices should be arranged hierarchically, that
connections should be reciprocal, and that forward and backward connections should show a functional
asymmetry (backward connections are both modulatory and driving, whereas forward connections need
only be driving).  In terms of synaptic physiology it predicts associative plasticity and, for dynamic models,
spike–timing-dependent plasticity.  In terms of electrophysiology it accounts for classical and extra-
classical receptive field effects and long-latency or endogenous components of evoked cortical
responses.  It predicts the attenuation of responses encoding prediction error with perceptual learning
and explains many phenomena like repetition suppression, mismatch negativity (MMN) and the P300 in
electroencephalography.  In psychophysical terms, it accounts for the behavioural correlates of these
physiological phenomena, e.g. priming, and global precedence.  The final focus of this talk is on
perceptual learning as measured with repetition suppression and the implications for empirical studies of
coupling among cortical areas.
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•The free energy principle
•Hierarchical dynamic models
•Bayesian inversion and perception
•Neuronal architectures
•Simulating ERPs
•Repetition suppression
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The free energy principleThe free energy principle
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Hierarchical dynamic modelsHierarchical dynamic models
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Variational Bayes and EMVariational Bayes and EM
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Neuronal architectureNeuronal architecture
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 Perceptual learning: error suppression over repetitions



Suppression of inferotemporal
responses to repeated faces

Main effect
of faces

Henson et al 2000

An fMRI example of perceptual learning andAn fMRI example of perceptual learning and
suppression of prediction error (free energy)suppression of prediction error (free energy)



Repetition suppressionRepetition suppression
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Fig. 1.   Experiment 1. (A) Examples of the three different stimulus
conditions. (B Left) Areas of increased (red/yellow) and decreased
(blue) activity comparing 3D figures to random lines for a
representative subject on a flattened representation of occipital cortex.
(B Right) A flickering ring stimulus matching the mean eccentricity of
the line drawings was used to independently locate the portion of V1
where the line drawing stimuli occurred. The reduced activity for the
3D figures in V1 is restricted to the cortical area representing the
stimuli. The solid line indicates the representation of the vertical
meridian, marking the boundary of V1. The location of MT+ defined by
random dot motion is included as a reference. Fig. 6 shows the
relative location of the ROIs and the location of the "cuts" to flatten the
cortex. (C) The average percent signal change from the mean for the
three conditions averaged over six subjects. All pair-wise comparisons
are significant, P < 0.001. Error bars are SEM. (D) The average time
course of the MRI signal in the LOC (solid line) and V1 (dashed line).
Percent signal change is from the mean activation across all three
conditions. Periods corresponding to the three conditions, random (R,
white), 3D (dark gray), and 2D (light gray), are shown. The
dissociation between the LOC and V1 is clearly evident: as activity
increases in the LOC, activity in V1 declines.

Shape perception reduces activity in human primary visual cortex Shape perception reduces activity in human primary visual cortex 
Scott O. MurrayScott O. Murray  ,  Daniel Kersten , Bruno A. Olshausen,  Paul Schrater, and David L. Woods,  Daniel Kersten , Bruno A. Olshausen,  Paul Schrater, and David L. Woods
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SummarySummary

 A free energy principle can account for some aspects of action and
perception

 The architecture of cortical systems speak to hierarchical generative
models

 Estimation of hierarchical dynamic models corresponds to a
generalised deconvolution of inputs to disclose their causes

 This deconvolution can be implemented in a neuronally plausible
fashion by constructing a dynamic system that self-organises when
exposed to inputs to suppress its free energy


