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« Le hasard n’est que la mesure de notre ignorance »
Henri Poincare, La science et I'hypothese, 1902

= Probability is the best way to quantify knowledge




The problem ...

Deep Blue beats Kasparov (1997) Childr_en o_utma_tch the mosjc powerful
machines in object perception




Imperfect knowledge about brain functions

Brain’s imperfect knowledge about outside world:

e uncertainty and incompleteness of sensory data
e limited actions, temporal constraints
e internal model incompleteness




Sensory Data TR I i = Action
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How to express various forms of knowledge ?
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Ex.: Data, facts, ...

Ex.: thresholds,
validity domains, ...

EX.: uncertainty,
variability, ...




= Probabillity distribution as a common language for all knowledge for




If ... Then...

“If I know x, then y is exactly known” : function x = y = f(x

“If | know Xx, then y is confined in some subset” : R(x,y) = true

generalization

“If I know X, then | can improve my knowledge on y”: P(y | x) = P(x, y) / P(x)




The 3 main steps:

1. Choice of variables : , v E , q%.
2. Expression of knowledge: P( ) '{ ) ﬁ;‘ ) ,3. )=

POEDPCE IE)P(E T )PCATF)

3. Exploitation:
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The perception is an inverse problem...
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Physical State S Observed sensory data D




Worse, it is an ill-posed inverse problem...

Perceived State S1

Observed sensory data D

Perceived State S2




A simplified perception scheme: @ - @

S: perceived state

D: sensory data

Prior: P(S)

Sensor model: P(D | S)

Sensory Data
— _
Perception:

P(S| D) ~P(S).P(D | S)




Perception viewed as an internal model explaining sensory data

P(S | D1 D2 ... Dn) ~ P(S)._i.; » P(DilS)

logP(S | D1 D2 ...Dn) = a + log P(S) + 2 log P(Di | S)

i=1,n

Ex.: log P(S | D1 D2 ..Dn) = a- _ |S|2—_ 3., |Di-Si|%/o,2

i=1,n




Ex. : polygonal segmentation from laser proximeter data P(S) = (1/Z). Exp( - . Nb of 1)
= regularization constant

S=11111111

S=10001111




More complex structures can be captured by Bayesian networks
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Two examples:

1. 3D shape from motion

2. 3D self-motion perception




Shadows, reflexions

Perspective

Object Perception

Numerous sources of information
Various characteristics (uncertainty, ambiguity)

/|

//

g O

3D Structure-from-"? Binocular disparity

Colors & Textures Movement




Motion cues:

The rigidity assumption : the relative movement is a 3D isometric transformation




Perspective cues:

prior knowledge favoring regular texture on 3D surface

The 1image of a regular plane ...

...back projected on another planc Fgm
= « trompe-1’ce1l »




According to the rigidity assumption:
Optic Flow = rotation + translation velocity fields
_=R+p.T p = proximity map (1/distance)

Object geometry (p) and relative 3D motion (R, T) determine the optic flow (_)
Knowing _, how to compute shape and movement parameters (p, R, T) ?

The direct functional model is quite simple:
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But the inverse problem is quite difficult ...

Non linear equations + “noise” + high dimension (~ 12)
= General Algorithms are typically not robust




Several examples of optic flow ambiguities

1. Perceptive inversion (Fronto-parallel plane symmetry for both object & motion)




3. Conflict between motion & pictorial cues
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O - Passive

MOTION / PERS.

M. Wexler, F. Panerai, I. Lamouret & J. Droulez, Nature, 409, 85-88 (2001)




4. Contribution of self motion to depth perception (scale ambiguity)

Subject Motion (SM) versus Object Motion (OM)
Task: report whether or not object distance is less than one meter

All trials Same relative velocity

| = sm
. OM
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Panerai, Cornilleau-Péres & Droulez, Perception & Psychophysics, 64: 717-731 (2002)




The stationarity assumption :
Preference for small allocentric object movement

Observer’'s movement




Knowledge about self motion (observer’s displacement)
Can be used to remove optic flow ambiguities = Stationarity Assumption

Suppression of perceptive inversion

Same movement
but produced by
the observer
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Fig. 4. Geometry of Experiment 2. On the left is a plane with
horizontal tilt, rotating about a vertical axis. On the right is a plane
with vertical tilt. approaching the observer while rotating about a

horizontal axis. Both motions results in the same first-order optic
flow. whose components arc shown above the corresponding human

figure.

Fig. 6. Results H:penmm 1()!) the ACT @ dPASS dxw . in o dil ns A wnd B.
the of the stationary hypa thesis are marke d hy . (b) Fraction
andard

Wexler, Lamouret & Droulez, Vision Research, 41, 3023-3037 (2001) [ e e




Variability of perceptive responses (« shear effect »)

shear angle 45°

== ACT
== |[MMOB
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J. Van Boxtel, M. Wexler & J. Droulez, Journal of Vision 3(5) : 318-332. (2003)




Structure of the probabilistic model

Variables : Object structure, Observer motion, Relative Motion, Optic Flow

Knowledge Expression:
P(Obj, Obs, Move, Flow) = P(Obj).P(Obs).P(Move | Obs).P(Flow | Move, Obj)

P(Obj) = “Fronto-parallel plane prior”
P(Obs) = “Self-motion information”

P(Move | Obs) = “Stationarity assumption”
P(Flow | Move, Object) = “Rigidity assumption”

Question: P(Obj | Obs, Flow) ?

Experimental results to be explained:

- Perceptive Inversion (suppressed in active condition)

- Perceptive variability due to shear (reduced in active condition)

- 90° Rotation of perceived orientation with added depth translation

F. Colas, J. Droulez, M. Wexler & P. Bessiére (2005)




Probabilistic model (results)

Immobile
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The vestibular sensor : 3 semi-circular canals (head angular acceleration)
+ 2 otolithic organs (head linear acceleration)

{i receptor

TT [.neuron
— tor-
depolarization ;ﬁfti?,t?gl

action-
potential




A first example of ambiguity: how to estimate the sustained angular velocity ?

Observation (from SCC)

10 sec

Physical state (dH/dt)

Data from Biittner & Waespe (81)

While an exact integration (from filtered acceleration to velocity) is mathematically
straightforward, it would yield error accumulation with noisy sensory data !
= The brain favors low estimated velocity




Another well-known example of ambiguity:
how to distinguish the inertial linear acceleration from gravity ?




F=G-A
The physical state (A,G) cannot be inferred from the observed otolithic signal (F)

The actual solution Another solution to the inverse problem




Both ambiguities combine each other !

Ex.: during off-axis rotation (centrifugation)

Physical state

Decreasing the estimated angular velocity
= alignment of estimated gravity with F
= decreasing estimated linear acceleration to O




Dealing with temporal series of variables: Bayesian Filters

Variables: Dy,...,Dy, Sgr Sys - St

Knowledge expression :

P(Dy,...:Dys Sor Sy/ -1 Sp) = P(Sg)-P(Sy | Sg)-P(D4 | Sq)----P(S¢ | S¢-1)-P(Dy | Sp)
Observation : P(D; | Sy) « sensor models »

Transition: P(S; | Si.;) « dynamic models »

Exploitation:
P(S; | dy,-.,dp) ~ P(di |'Sp). Z gpq P(S¢ 1 Siq)-P(Seq [ dy,oo,dq)

Particular cases: HMM, Kalman




Dynamics + priors &
(Low angular velocity & linear acceleration) 3

_ Prior
Noise _ N(0, 0.3) rad/s
N(0, 0.005) rad/s_

f | . n
\JI' Double integration

Canal _" Rotational Rotational Head
signal acceleration j velocity j orientation

(_ Double integration

Otolith ——p ~ Linear Linear ~ =————p Head
signal acceleration j velocity j position

Prior
N(O, 2) m/s_
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J. Laurens & J. Droulez, 2004




Neural Implementation of probabilistic computations:
(the 31 person viewpoint)

Main issues:

1. Relevant variables ? O m

Coordinates: x1, x2... Space-time subsets: S1, S2, ...

2. Neural code for P(x) ?

e G Il = S ey

NOR L p(xit).dt = A

Sampling through
/ random neuroT
3. Reduction of computational costs ? e release

(H. Korn & DH Faber, 87)
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Thank you for your attention,

and for your patience ...




